Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 84(8): 1460-1474.e6, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640894

RESUMEN

DNA polymerase θ (Polθ) plays a central role in a DNA double-strand break repair pathway termed theta-mediated end joining (TMEJ). TMEJ functions by pairing short-sequence "microhomologies" (MHs) in single-stranded DNA at each end of a break and subsequently initiating DNA synthesis. It is not known how the Polθ helicase domain (HD) and polymerase domain (PD) operate to bring together MHs and facilitate repair. To resolve these transient processes in real time, we utilized in vitro single-molecule FRET approaches and biochemical analyses. We find that the Polθ-HD mediates the initial capture of two ssDNA strands, bringing them in close proximity. The Polθ-PD binds and stabilizes pre-annealed MHs to form a synaptic complex (SC) and initiate repair synthesis. Individual synthesis reactions show that Polθ is inherently non-processive, accounting for complex mutational patterns during TMEJ. Binding of Polθ-PD to stem-loop-forming sequences can substantially limit synapsis, depending on the available dNTPs and sequence context.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Polimerasa Dirigida por ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple/genética , ADN Helicasas/genética , Reparación del ADN por Unión de Extremidades
2.
Biochemistry ; 63(19): 2414-2424, 2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-39299701

RESUMEN

DNA polymerase ß (Pol ß) fills single nucleotide gaps during base excision repair. Deficiencies in Pol ß can lead to increased mutagenesis and genomic instability in the cell, resulting in cancer. Our laboratory has previously shown that the I260 M somatic mutation of Pol ß, which was first identified in prostate cancer, has reduced nucleotide discrimination in a sequence context-dependent manner. I260 M incorporates the incorrect G opposite A in this context more readily than WT. To identify the molecular mechanism of the reduced fidelity of I260M, we studied incorporation using single turnover kinetics and the nature and rates of conformational changes using steady-state fluorescence and Förster resonance energy transfer (FRET). Our data indicate that the I260 M mutation affects the fingers region of rat Pol ß by creating a "collapsed" state in both the open (in the absence of nucleotide) and closed (prior to chemistry) states. I260 M is a temperature-sensitive mutator and binds nucleotides tighter than the WT protein, resulting in reduced fidelity compared to the WT. Additionally, we have generated a kinetic model of WT and I260 M using FRET and single turnover data, which demonstrates that I260 M precatalytic conformation changes differ compared to the WT as it is missing a precatalytic noncovalent step. Taken together, these results suggest that the collapsed state of I260 M may decrease its ability for nucleotide discrimination, illustrating the importance of the "fingers closing" conformational change for polymerase fidelity and accurate DNA synthesis.


Asunto(s)
ADN Polimerasa beta , Transferencia Resonante de Energía de Fluorescencia , ADN Polimerasa beta/metabolismo , ADN Polimerasa beta/química , ADN Polimerasa beta/genética , Animales , Cinética , Ratas , Conformación Proteica , Mutación , Modelos Moleculares , Reparación del ADN , Humanos
3.
J Biol Chem ; 295(27): 9012-9020, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32385112

RESUMEN

Eukaryotic DNA polymerase ß (Pol ß) plays an important role in cellular DNA repair, as it fills short gaps in dsDNA that result from removal of damaged bases. Since defects in DNA repair may lead to cancer and genetic instabilities, Pol ß has been extensively studied, especially its mechanisms for substrate binding and a fidelity-related conformational change referred to as "fingers closing." Here, we applied single-molecule FRET to measure distance changes associated with DNA binding and prechemistry fingers movement of human Pol ß. First, using a doubly labeled DNA construct, we show that Pol ß bends the gapped DNA substrate less than indicated by previously reported crystal structures. Second, using acceptor-labeled Pol ß and donor-labeled DNA, we visualized dynamic fingers closing in single Pol ß-DNA complexes upon addition of complementary nucleotides and derived rates of conformational changes. We further found that, while incorrect nucleotides are quickly rejected, they nonetheless stabilize the polymerase-DNA complex, suggesting that Pol ß, when bound to a lesion, has a strong commitment to nucleotide incorporation and thus repair. In summary, the observation and quantification of fingers movement in human Pol ß reported here provide new insights into the delicate mechanisms of prechemistry nucleotide selection.


Asunto(s)
ADN Polimerasa beta/metabolismo , ADN/metabolismo , Cristalografía por Rayos X/métodos , ADN Polimerasa I/química , ADN Polimerasa beta/fisiología , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Nucleótidos/metabolismo , Conformación Proteica , Especificidad por Sustrato/fisiología
4.
Nat Methods ; 15(9): 669-676, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30171252

RESUMEN

Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Laboratorios/normas , Reproducibilidad de los Resultados
6.
Phys Chem Chem Phys ; 19(6): 4222-4230, 2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-28116374

RESUMEN

We developed a versatile DNA assay and framework for monitoring polymerization of DNA in real time and at the single-molecule level. The assay consists of an acceptor labelled DNA primer annealed to a DNA template that is labelled on its single stranded, downstream overhang with a donor fluorophore. Upon extension of the primer using a DNA polymerase, the overhang of the template alters its conformation from a random coil to the canonical structure of double stranded DNA. This conformational change increases the distance between the donor and the acceptor fluorophore and can be detected as a decrease in the Förster resonance energy transfer (FRET) efficiency between both fluorophores. Remarkably, the DNA assay does not require any modification of the DNA polymerase and albeit the simple and robust spectroscopic readout facilitates measurements even with conventional fluorimeters or stopped-flow equipment, single-molecule FRET provides additional access to parameters such as the processivity of DNA synthesis and, for one of the three DNA polymerases tested, the detection of binding and dissociation of the DNA polymerase to DNA. We furthermore demonstrate that primer extensions by a single base can be resolved.


Asunto(s)
ADN/biosíntesis , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Técnicas Genéticas , ADN/metabolismo , Cartilla de ADN/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Conformación de Ácido Nucleico
7.
Front Cell Dev Biol ; 10: 886718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573672

RESUMEN

V(D)J recombination is an essential mechanism of the adaptive immune system, producing a diverse set of antigen receptors in developing lymphocytes via regulated double strand DNA break and subsequent repair. DNA cleavage is initiated by the recombinase complex, consisting of lymphocyte specific proteins RAG1 and RAG2, while the repair phase is completed by classical non-homologous end joining (NHEJ). Many of the individual steps of this process have been well described and new research has increased the scale to understand the mechanisms of initiation and intermediate stages of the pathway. In this review we discuss 1) the regulatory functions of RAGs, 2) recruitment of RAGs to the site of recombination and formation of a paired complex, 3) the transition from a post-cleavage complex containing RAGs and cleaved DNA ends to the NHEJ repair phase, and 4) the potential redundant roles of certain factors in repairing the break. Regulatory (non-core) domains of RAGs are not necessary for catalytic activity, but likely influence recruitment and stabilization through interaction with modified histones and conformational changes. To form long range paired complexes, recent studies have found evidence in support of large scale chromosomal contraction through various factors to utilize diverse gene segments. Following the paired cleavage event, four broken DNA ends must now make a regulated transition to the repair phase, which can be controlled by dynamic conformational changes and post-translational modification of the factors involved. Additionally, we examine the overlapping roles of certain NHEJ factors which allows for prevention of genomic instability due to incomplete repair in the absence of one, but are lethal in combined knockouts. To conclude, we focus on the importance of understanding the detail of these processes in regards to off-target recombination or deficiency-mediated clinical manifestations.

8.
Sci Adv ; 8(36): eabq0414, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36070389

RESUMEN

PARP inhibitors (PARPi) have emerged as promising cancer therapeutics capable of targeting specific DNA repair pathways, but their mechanism of action with respect to PARP1-DNA retention remains unclear. Here, we developed single-molecule assays to directly monitor the retention of PARP1 on DNA lesions in real time. Our study reveals a two-step mechanism by which PARPi modulate the retention of PARP1 on DNA lesions, consisting of a primary step of catalytic inhibition via binding competition with NAD+ followed by an allosteric modulation of bound PARPi. While clinically relevant PARPi exhibit distinct allosteric modulation activities that can either increase retention of PARP1 on DNA or induce its release, their retention potencies are predominantly determined by their ability to outcompete NAD+ binding. These findings provide a mechanistic basis for improved PARPi selection according to their characteristic activities and enable further development of more potent inhibitors.

9.
DNA Repair (Amst) ; 105: 103170, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34256335

RESUMEN

Formation of biomolecular condensates is increasingly recognized as a mechanism employed by cells to deal with stress and to optimize enzymatic reactions. Recent studies have characterized several DNA repair foci as phase-separated condensates, behaving like liquid droplets. Concomitantly, the apparent importance of long non-coding RNAs and RNA-binding proteins for the repair of double-strand breaks has raised many questions about their exact contribution to the repair process. Here we discuss how RNA molecules can participate in condensate formation and how RNA-binding proteins can act as molecular scaffolds. We furthermore summarize our current knowledge about how properties of condensates can influence the choice of repair pathway (homologous recombination or non-homologous end joining) and identify the open questions in this field of emerging importance.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ARN/metabolismo , Reparación del ADN por Recombinación , Animales , ADN/metabolismo , Eucariontes/genética , Eucariontes/metabolismo , Humanos
10.
Lab Chip ; 19(1): 79-86, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30468446

RESUMEN

Single-molecule detection schemes offer powerful means to overcome static and dynamic heterogeneity inherent to complex samples. However, probing biomolecular interactions and reactions with high throughput and time resolution remains challenging, often requiring surface-immobilized entities. Here, we introduce glass-made nanofluidic devices for the high-throughput detection of freely-diffusing single biomolecules by camera-based fluorescence microscopy. Nanochannels of 200 nm height and a width of several micrometers confine the movement of biomolecules. Using pressure-driven flow through an array of parallel nanochannels and by tracking the movement of fluorescently labelled DNA oligonucleotides, we observe conformational changes with high throughput. In a device geometry featuring a T-shaped junction of nanochannels, we drive steady-state non-equilibrium conditions by continuously mixing reactants and triggering chemical reactions. We use the device to probe the conformational equilibrium of a DNA hairpin as well as to continuously observe DNA synthesis in real time. Our platform offers a straightforward and robust method for studying reaction kinetics at the single-molecule level.


Asunto(s)
ADN/análisis , Dispositivos Laboratorio en un Chip , Nanotecnología/instrumentación , Imagen Individual de Molécula/instrumentación , ADN/química , Diseño de Equipo , Vidrio , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ácidos Nucleicos Inmovilizados/química , Microscopía Fluorescente , Sondas Moleculares/química
11.
Protoplasma ; 251(2): 317-32, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24374460

RESUMEN

Single-molecule Förster resonance energy transfer (smFRET) has emerged as a powerful tool for elucidating biological structure and mechanisms on the molecular level. Here, we focus on applications of smFRET to study interactions between DNA and enzymes such as DNA and RNA polymerases. SmFRET, used as a nanoscopic ruler, allows for the detection and precise characterisation of dynamic and rarely occurring events, which are otherwise averaged out in ensemble-based experiments. In this review, we will highlight some recent developments that provide new means of studying complex biological systems either by combining smFRET with force-based techniques or by using data obtained from smFRET experiments as constrains for computer-aided modelling.


Asunto(s)
ADN/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas/química , Animales , ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Microscopía Fluorescente/métodos , Nanotecnología , Proteínas/metabolismo
12.
J Mater Chem B ; 2(36): 5948-5951, 2014 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32261847

RESUMEN

Here we examine a self-assembling virus like particle to construct catalytically active nanoparticles that can inhibit bacterial growth. The results suggest that encapsulation of enzymes inside VLPs can be exploited to develop new bionanomaterials with useful functionalities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA