Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 91(22): 14375-14382, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31621301

RESUMEN

The development of a rapid, sensitive, and selective real-time detection method for explosives traces may have an enormous impact on civilian national security, military applications, and environmental monitoring. However, real-time sensing of explosives still possesses a huge analytical hurdle, rendering explosives detection an issue of burning immediacy and an enormous current challenge in terms of research and development. Even though several explosives detection methods have been established, these approaches are typically time-consuming, need relatively large equipment, demand sample preparation, require a skilled operator, and lack the capability to do high-throughput real-time detection, thus strongly constraining their mass deployment. Here, we demonstrate the use of amino-modified carbon microfiber (µCF) working electrodes for ultrasensitive, selective, and multiplex detection of nitro-based explosives. Furthermore, our sensing method works at high sampling rates by a single electrode in a single detection cycle. We hereby present the first demonstration of porous µCF electrodes used for the simultaneous collection/preconcentration of explosive molecular species through direct air sampling, followed by the electrochemical detection of the surface adsorbed electroactive species. Our chemically modified µCF electrodes allow straightforward vapor-phase detection and discrimination of multiple nitro-based explosives directly from collected air samples. Hence, our sensing approach has been shown highly effective in the ultratrace detection of nitro-based explosives, under real-world conditions.

2.
Anal Chem ; 91(8): 5323-5330, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30892020

RESUMEN

The ability to detect traces of highly energetic explosive materials sensitively, selectively, accurately, and rapidly could be of enormous benefit to civilian national security, military applications, and environmental monitoring. Unfortunately, the detection of explosives still poses a largely unmet arduous analytical problem, making their detection an issue of burning immediacy and a massive current challenge in terms of research and development. Although numerous explosive detection approaches have been developed, these methods are usually time-consuming, require bulky equipment, tedious sample preparation, a trained operator, cannot be miniaturized, and lack the ability to perform automated real-time high-throughput analysis, strongly handicapping their mass deployment. Here, we present the first demonstration of the "direct" electrochemical approach for the sensitive, selective, and rapid vapor trace detection of TATP and HMTD, under ambient conditions, unaffected by the presence of oxygen and hydrogen peroxide species, down to concentrations lower than 10 ppb. The method is based on the use of Ag-nanoparticles-decorated carbon microfibers air-collecting electrodes (µCF), which allow for the selective direct detection of the organic peroxide explosives, through opening multiple redox routes, not existent in the undecorated carbon electrodes. Finally, we demonstrate the direct and rapid detection of TATP and HMTD explosive species from real-world air samples.

3.
Nano Lett ; 11(4): 1727-32, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21438594

RESUMEN

Fuel cells (FCs) are promising electrochemical devices that convert chemical energy of fuels directly into electrical energy. We present a new anode material based on nanotextured metal copper for fuel cell applications. We have demonstrated that low-cost copper catalyst anodes act as highly efficient and ultra-long-lasting materials for the direct electro-oxidation of ammonia-borane and additional amine derivatives. High power densities of ca. 1W·cm(-2) (ca. -1 V vs Ag/AgCl at 1 A) are readily achieved at room temperature. We fabricate fuel cell devices based on our nanotextured Cu anodes in combination with commercial air cathodes.


Asunto(s)
Cobre/química , Suministros de Energía Eléctrica , Electroquímica/instrumentación , Electrodos , Nanoestructuras/química , Diseño de Equipo , Análisis de Falla de Equipo , Nanoestructuras/ultraestructura , Tamaño de la Partícula
4.
Adv Sci (Weinh) ; 9(36): e2203678, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36366929

RESUMEN

Efficient neutral water splitting may represent in future a sustainable solution to unconstrained energy requirements, but yet necessitates the development of innovative avenues for achieving the currently unmet required performances. Herein, a novel paradigm based on the combination of electronic structure engineering and surface morphology tuning of earth-abundant 3D-hierarchical binder-free electrocatalysts is demonstrated, via a scalable single-step thermal transformation of nickel substrates under sulfur environment. A temporal-evolution of the resulting 3D-nanostructured substrates is performed for the intentional enhancement of non-abundant highly-catalytic Ni3+ and pSn 2- species on the catalyst surface, concomitantly accompanied with densification of the hierarchical catalyst morphology. Remarkably, the finely engineered NiSx catalyst synthesized via thermal-evolution for 24 h (NiSx -24 h) exhibits an exceptionally low cell voltage of 1.59 V (lower than Pt/C-IrO2  catalytic couple) for neutral water splitting, which represents the lowest value ever reported. The enhanced performance of NiSx -24 h is a multi-synergized consequence of the simultaneous enrichment of oxygen and hydrogen evolution reaction catalyzing species, accompanied by an optimum electrocatalytic surface area and intrinsic high conductivity. Overall, this innovative work opens a route to engineering the active material's electronic structure/morphology, demonstrating novel Ni3+ /pSn 2- -enriched NiSx catalysts which surpass state-of-the-art materials for neutral water splitting.

5.
Small Methods ; 6(6): e2200181, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35491235

RESUMEN

Hydrogen, undoubtedly the next-generation fuel for supplying the world's energy demands, needs economically scalable bifunctional electrocatalysts for its sustainable production. Non-noble transition metal-based electrocatalysts are considered an economic solution for water splitting applications. A single-step solid-state approach for the economically scalable transformation of Ni-based substrates into single-crystalline nickel sulfide nanoplate arrays is developed. X-ray diffraction and transmission electron microscopy measurements reveal the influence of the transformation temperature on the crystal growth direction, which in turn can manipulate the chemical state at the catalyst surface. Ni-based sulfide formed at 450 °C exhibits an enhanced concentration of electrocatalytically-active Ni3+ at their surface and a reduced electron density around sulfur atoms, optimal for efficient H2 production. The Ni-based sulfide electrocatalysts display exceptional electrocatalytic performance for both oxygen and hydrogen evolution, with overpotentials of 170 and 90 mV respectively. Remarkably, the two-electrode cell for overall electrolysis of alkaline water demonstrates an ultra-low cell potential of 1.46 V at 10 mA cm-2 and 1.69 V at 100 mA cm-2 . In addition to the exceptionally low water-splitting cell voltage, this self-standing electrocatalyst is of binderfree nature, with the electrode preparation being a low-cost and single-step process, easily scalable to industrial scales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA