Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34921114

RESUMEN

N6-methyladenosine (m6A) deposition on messenger RNA (mRNA) controls embryonic stem cell (ESC) fate by regulating the mRNA stabilities of pluripotency and lineage transcription factors (TFs) [P. J. Batista et al., Cell Stem Cell 15, 707-719 (2014); Y. Wang et al., Nat. Cell Biol. 16, 191-198 (2014); and S. Geula et al., Science 347, 1002-1006 (2015)]. If the mRNAs of these two TF groups become stabilized, it remains unclear how the pluripotency or lineage commitment decision is implemented. We performed noninvasive quantification of Nanog and Oct4 TF protein levels in reporter ESCs to define cell-state dynamics at single-cell resolution. Long-term single-cell tracking shows that immediate m6A depletion by Mettl3 knock-down in serum/leukemia inhibitory factor supports both pluripotency maintenance and its departure. This is mediated by differential and opposing signaling pathways. Increased FGF5 mRNA stability activates pErk, leading to Nanog down-regulation. FGF5-mediated coactivation of pAkt reenforces Nanog expression. In formative stem cells poised toward differentiation, m6A depletion activates both pErk and pAkt, increasing the propensity for mesendodermal lineage induction. Stable m6A depletion by Mettl3 knock-out also promotes pErk activation. Higher pErk counteracts the pluripotency exit delay exhibited by stably m6A-depleted cells upon differentiation. At single-cell resolution, we illustrate that decreasing m6A abundances activates pErk and pAkt-signaling, regulating pluripotency departure.


Asunto(s)
Adenosina/análogos & derivados , Células Madre Embrionarias/fisiología , Sistema de Señalización de MAP Quinasas , Adenosina/metabolismo , Animales , Línea Celular , Estratos Germinativos/citología , Ratones
2.
Nature ; 535(7611): 299-302, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27411635

RESUMEN

The mechanisms underlying haematopoietic lineage decisions remain disputed. Lineage-affiliated transcription factors with the capacity for lineage reprogramming, positive auto-regulation and mutual inhibition have been described as being expressed in uncommitted cell populations. This led to the assumption that lineage choice is cell-intrinsically initiated and determined by stochastic switches of randomly fluctuating cross-antagonistic transcription factors. However, this hypothesis was developed on the basis of RNA expression data from snapshot and/or population-averaged analyses. Alternative models of lineage choice therefore cannot be excluded. Here we use novel reporter mouse lines and live imaging for continuous single-cell long-term quantification of the transcription factors GATA1 and PU.1 (also known as SPI1). We analyse individual haematopoietic stem cells throughout differentiation into megakaryocytic-erythroid and granulocytic-monocytic lineages. The observed expression dynamics are incompatible with the assumption that stochastic switching between PU.1 and GATA1 precedes and initiates megakaryocytic-erythroid versus granulocytic-monocytic lineage decision-making. Rather, our findings suggest that these transcription factors are only executing and reinforcing lineage choice once made. These results challenge the current prevailing model of early myeloid lineage choice.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Factor de Transcripción GATA1/metabolismo , Células Mieloides/citología , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Animales , Eritrocitos/citología , Retroalimentación Fisiológica , Femenino , Genes Reporteros , Granulocitos/citología , Hematopoyesis , Células Madre Hematopoyéticas/citología , Masculino , Megacariocitos/citología , Ratones , Modelos Biológicos , Monocitos/citología , Reproducibilidad de los Resultados , Análisis de la Célula Individual , Procesos Estocásticos
3.
Nat Methods ; 14(1): 18-22, 2016 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-28032624

RESUMEN

Post-transcriptional RNA modifications were discovered several decades ago, but the reversible nature of RNA modifications has only recently been discovered. Owing to technological advances, knowledge of epitranscriptomic marks and their writers, readers and erasers has recently advanced tremendously. Here we focus on the roles of the dynamic methylation and demethylation of internal adenosines in mRNA in germ cells and pluripotent stem cells.


Asunto(s)
Epigénesis Genética/genética , Meiosis/genética , Células Madre Pluripotentes/metabolismo , ARN/química , ARN/genética , Animales , Humanos , Células Madre Pluripotentes/citología
4.
Mol Ther ; 19(4): 782-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21285961

RESUMEN

Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by gene transfer of reprogramming transcription factors. Expression levels of these factors strongly influence the overall efficacy to form iPSC colonies, but additional contribution of stochastic cell-intrinsic factors has been proposed. Here, we present engineered color-coded lentiviral vectors in which codon-optimized reprogramming factors are co-expressed by a strong retroviral promoter that is rapidly silenced in iPSC, and imaged the conversion of fibroblasts to iPSC. We combined fluorescence microscopy with long-term single cell tracking, and used live-cell imaging to analyze the emergence and composition of early iPSC clusters. Applying our engineered lentiviral vectors, we demonstrate that vector silencing typically occurs prior to or simultaneously with the induction of an Oct4-EGFP pluripotency marker. Around 7 days post-transduction (pt), a subfraction of cells in clonal colonies expressed Oct4-EGFP and rapidly expanded. Cell tracking of single cell-derived iPSC colonies supported the concept that stochastic epigenetic changes are necessary for reprogramming. We also found that iPSC colonies may emerge as a genetic mosaic originating from different clusters. Improved vector design with continuous cell tracking thus creates a powerful system to explore the subtle dynamics of biological processes such as early reprogramming events.


Asunto(s)
Reprogramación Celular/fisiología , Vectores Genéticos/genética , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Lentivirus/genética , Animales , Células Cultivadas , Reprogramación Celular/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Teratoma/metabolismo , Teratoma/patología
5.
Nat Biotechnol ; 24(3): 351-7, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16501577

RESUMEN

The application of human embryonic stem (hES) cells in regenerative medicine will require rigorous quality control measures to ensure the safety of hES cell-derived grafts. During propagation in vitro, hES cells can acquire cytogenetic abnormalities as well as submicroscopic genetic lesions, such as small amplifications or deletions. Many of the genetic abnormalities that arise in hES cell cultures are also implicated in human cancer development. The causes of genetic instability of hES cells in culture are poorly understood, and commonly used cytogenetic methods for detection of abnormal cells are capable only of low-throughput analysis on small numbers of cells. The identification of biomarkers of genetic instability in hES cells would greatly facilitate the development of culture methods that preserve genomic integrity. Here we show that CD30, a member of the tumor necrosis factor receptor superfamily, is expressed on transformed but not normal hES cells, and that CD30 expression protects hES cells against apoptosis.


Asunto(s)
Carcinoma Embrionario/metabolismo , Carcinoma Embrionario/patología , Antígeno Ki-1/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Biomarcadores/análisis , Técnicas de Cultivo de Célula , Diferenciación Celular , Línea Celular Transformada , Supervivencia Celular , Transformación Celular Neoplásica , Células Cultivadas , Humanos , Inmunohistoquímica , Cariotipificación
6.
Cell Syst ; 3(5): 480-490.e13, 2016 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-27883891

RESUMEN

Many cellular effectors of pluripotency are dynamically regulated. In principle, regulatory mechanisms can be inferred from single-cell observations of effector activity across time. However, rigorous inference techniques suitable for noisy, incomplete, and heterogeneous data are lacking. Here, we introduce stochastic inference on lineage trees (STILT), an algorithm capable of identifying stochastic models that accurately describe the quantitative behavior of cell fate markers observed using time-lapse microscopy data collected from proliferating cell populations. STILT performs exact Bayesian parameter inference and stochastic model selection using a particle-filter-based algorithm. We use STILT to investigate the autoregulation of Nanog, a heterogeneously expressed core pluripotency factor, in mouse embryonic stem cells. STILT rejects the possibility of positive Nanog autoregulation with high confidence; instead, model predictions indicate weak negative feedback. We use STILT for rational experimental design and validate model predictions using novel experimental data. STILT is available for download as an open source framework from http://www.imsb.ethz.ch/research/claassen/Software/stilt---stochastic-inference-on-lineage-trees.html.


Asunto(s)
Linaje de la Célula , Animales , Teorema de Bayes , Diferenciación Celular , Proteínas de Homeodominio , Homeostasis , Ratones , Modelos Biológicos , Células Madre Embrionarias de Ratones , Proteína Homeótica Nanog
7.
Trends Cardiovasc Med ; 13(7): 295-301, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14522470

RESUMEN

Human embryonic stem (ES) cells are cultured cell lines derived from the inner cell mass of the blastocyst that can be grown indefinitely in their undifferentiated state, yet also are capable of differentiating into all cells of the adult body as well as extraembryonic tissue. Detailed investigation of the properties of embryonal carcinoma cells of both the mouse and human as well as mouse and primate ES cells led to the initial isolation and subsequent culture of human ES cells. The methodologies that were developed to culture and characterize these cell lines have provided a template for the development of human ES cells. The existing data illustrate a number of important differences and similarities between human ES cells and the other cell lines. This review aims to provide a brief historic account of the development of the mammalian pluripotent stem cell field; describe how this led to the isolation, culture, and characterization of human ES cells; and discuss the potential implications of recent advances.


Asunto(s)
Blastocisto/citología , Técnicas de Cultivo de Célula/métodos , Células Madre/citología , Animales , Antígenos de Superficie/análisis , Blastocisto/inmunología , División Celular , Línea Celular Tumoral , Humanos , Células Madre/inmunología , Células Tumorales Cultivadas
8.
Nat Cell Biol ; 17(10): 1235-46, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26389663

RESUMEN

Transcription factor (TF) networks are thought to regulate embryonic stem cell (ESC) pluripotency. However, TF expression dynamics and regulatory mechanisms are poorly understood. We use reporter mouse ESC lines allowing non-invasive quantification of Nanog or Oct4 protein levels and continuous long-term single-cell tracking and quantification over many generations to reveal diverse TF protein expression dynamics. For cells with low Nanog expression, we identified two distinct colony types: one re-expressed Nanog in a mosaic pattern, and the other did not re-express Nanog over many generations. Although both expressed pluripotency markers, they exhibited differences in their TF protein correlation networks and differentiation propensities. Sister cell analysis revealed that differences in Nanog levels are not necessarily accompanied by differences in the expression of other pluripotency factors. Thus, regulatory interactions of pluripotency TFs are less stringently implemented in individual self-renewing ESCs than assumed at present.


Asunto(s)
Células Madre Embrionarias/metabolismo , Redes Reguladoras de Genes , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Diferenciación Celular/genética , Rastreo Celular/métodos , Células Cultivadas , Células Madre Embrionarias/citología , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Microscopía Fluorescente , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Análisis de la Célula Individual/métodos , Imagen de Lapso de Tiempo/métodos , Factores de Transcripción/metabolismo , Transducción Genética , Proteína Fluorescente Roja
12.
Stem Cell Res ; 1(1): 45-60, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19383386

RESUMEN

Mouse embryonic stem cells (mESC) exhibit cell cycle properties entirely distinct from those of somatic cells. Here we investigated the cell cycle characteristics of human embryonic stem cells (hESC). HESC could be sorted into populations based on the expression level of the cell surface stem cell marker GCTM-2. Compared to mESC, a significantly higher proportion of hESC (GCTM-2(+) Oct-4(+) cells) resided in G(1) and retained G(1)-phase-specific hypophosphorylated retinoblastoma protein (pRb). We showed that suppression of traverse through G(1) is sufficient to promote hESC differentiation. Like mESC, hESC expressed cyclin E constitutively, were negative for D-type cyclins, and did not respond to CDK-4 inhibition. By contrast, cyclin A expression was periodic in hESC and coincided with S and G(2)/M phase progression. FGF-2 acted solely to sustain hESC pluripotency rather than to promote cell cycle progression or inhibit apoptosis. Differentiation increased G(1)-phase content, reinstated cyclin D activity, and restored the proliferative response to FGF-2. Treatment with CDK-2 inhibitor delayed hESC in G(1) and S phase, resulting in accumulation of cells with hypophosphorylated pRb, GCTM-2, and Oct-4 and, interestingly, a second pRb(+) GCTM-2(+) subpopulation lacking Oct-4. We discuss evidence for a G(1)-specific, pRb-dependent restriction checkpoint in hESC closely associated with the regulation of pluripotency.


Asunto(s)
Ciclo Celular , Diferenciación Celular , Biomarcadores , Células Madre Embrionarias/citología , Fase G1 , Humanos , Células Madre Pluripotentes/citología
13.
Stem Cells ; 23(10): 1541-8, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16081668

RESUMEN

Human embryonic stem cells (hESCs) have great potential for use in research and regenerative medicine, but very little is known about the factors that maintain these cells in the pluripotent state. We investigated the role of three major mitogenic agents present in serum--sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), and platelet-derived growth factor (PDGF)--in maintaining hESCs. We show here that although LPA does not affect hESC growth or differentiation, coincubation of S1P and PDGF in a serum-free culture medium successfully maintains hESCs in an undifferentiated state. Our studies indicate that signaling pathways activated by tyrosine kinase receptors act synergistically with those downstream from lysophospholipid receptors to maintain hESCs in the undifferentiated state. This study is the first demonstration of a role for lysophospholipid receptor signaling in the maintenance of stem cell pluri-potentiality.


Asunto(s)
Lisofosfolípidos/fisiología , Factor de Crecimiento Derivado de Plaquetas/fisiología , Esfingosina/análogos & derivados , Células Madre/citología , Células Madre/fisiología , Técnicas de Cultivo de Célula , Células Cultivadas , Investigaciones con Embriones , Humanos , Lisofosfolípidos/farmacología , Factor de Crecimiento Derivado de Plaquetas/farmacología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/efectos de los fármacos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptores del Ácido Lisofosfatídico/efectos de los fármacos , Receptores del Ácido Lisofosfatídico/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Esfingosina/farmacología , Esfingosina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA