Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Mol Biol ; 87(1-2): 143-56, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25403732

RESUMEN

Custom-designed nucleases can enable precise plant genome editing by catalyzing DNA-breakage at specific targets to stimulate targeted mutagenesis or gene replacement. The CRISPR-Cas system, with its target-specifying RNA molecule to direct the Cas9 nuclease, is a recent addition to existing nucleases that bind and cleave the target through linked protein domains (e.g. TALENs and zinc-finger nucleases). We have conducted a comparative study of these different types of custom-designed nucleases and we have assessed various components of the CRISPR-Cas system. For this purpose, we have adapted our previously reported assay for cleavage-dependent luciferase gene correction in Nicotiana benthamiana leaves (Johnson et al. in Plant Mol Biol 82(3):207-221, 2013). We found that cleavage by CRISPR-Cas was more efficient than cleavage of the same target by TALENs. We also compared the cleavage efficiency of the Streptococcus pyogenes Cas9 protein based on expression using three different Cas9 gene variants. We found significant differences in cleavage efficiency between these variants, with human and Arabidopsis thaliana codon-optimized genes having the highest cleavage efficiencies. We compared the activity of 12 de novo-designed single synthetic guide RNA (sgRNA) constructs, and found their cleavage efficiency varied drastically when using the same Cas9 nuclease. Finally, we show that, for one of the targets tested with our assay, we could induce a germinally-transmitted deletion in a repeat array in A. thaliana. This work emphasizes the efficiency of the CRISPR-Cas system in plants. It also shows that further work is needed to be able to predict the optimal design of sgRNAs or Cas9 variants.


Asunto(s)
Arabidopsis/enzimología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endonucleasas/metabolismo , Secuencia de Bases , ADN de Plantas , Hidrólisis , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente
2.
Proc Natl Acad Sci U S A ; 109(46): 19021-6, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23112190

RESUMEN

Tomato (Solanum lycopersicum) fruit accumulate the red carotenoid pigment lycopene. The recessive mutation yellow-flesh (locus r) in tomato eliminates fruit carotenoids by disrupting the activity of the fruit-specific phytoene synthase (PSY1), the first committed step in the carotenoid biosynthesis pathway. Fruits of the recessive mutation tangerine (t) appear orange due to accumulation of 7,9,7',9'-tetra-cis-lycopene (prolycopene) as a result of a mutation in the carotenoid cis-trans isomerase. It was established 60 y ago that tangerine is epistatic to yellow-flesh. This uncharacteristic epistasis interaction defies a paradigm in biochemical genetics arguing that mutations that disrupt enzymes acting early in a biosynthetic pathway are epistatic to other mutations that block downstream steps in the same pathway. To explain this conundrum, we have investigated the interaction between tangerine and yellow-flesh at the molecular level. Results presented here indicate that allele r(2997) of yellow-flesh eliminates transcription of PSY1 in fruits. In a genetic background of tangerine, transcription of PSY1 is partially restored to a level sufficient for producing phytoene and downstream carotenoids. Our results revealed the molecular mechanism underlying the epistasis of t over r and suggest the involvement of cis-carotenoid metabolites in a feedback regulation of PSY1 gene expression.


Asunto(s)
Transferasas Alquil y Aril/biosíntesis , Carotenoides/metabolismo , Epistasis Genética/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Pigmentación/fisiología , Proteínas de Plantas/biosíntesis , Solanum lycopersicum/enzimología , Transferasas Alquil y Aril/genética , Carotenoides/genética , Genes Recesivos , Geranilgeranil-Difosfato Geranilgeraniltransferasa , Solanum lycopersicum/genética , Mutación , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA