Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Mol Genet ; 29(18): 3021-3031, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32833011

RESUMEN

Loss of UBE3A expression, a gene regulated by genomic imprinting, causes Angelman syndrome (AS), a rare neurodevelopmental disorder. The UBE3A gene encodes an E3 ubiquitin ligase with three known protein isoforms in humans. Studies in mouse suggest that the human isoforms may have differences in localization and neuronal function. A recent case study reported mild AS phenotypes in individuals lacking one specific isoform. Here we have used CRISPR/Cas9 to generate isogenic human embryonic stem cells (hESCs) that lack the individual protein isoforms. We demonstrate that isoform 1 accounts for the majority of UBE3A protein in hESCs and neurons. We also show that UBE3A predominantly localizes to the cytoplasm in both wild type and isoform-null cells. Finally, we show that neurons lacking isoform 1 display a less severe electrophysiological AS phenotype.


Asunto(s)
Síndrome de Angelman/genética , Predisposición Genética a la Enfermedad , Ubiquitina-Proteína Ligasas/genética , Síndrome de Angelman/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos/genética , Impresión Genómica/genética , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Ratones , Neuronas/metabolismo , Neuronas/patología , Isoformas de Proteínas/genética
2.
iScience ; 25(9): 104966, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36060065

RESUMEN

MECP2 loss-of-function mutations cause Rett syndrome, a neurodevelopmental disorder resulting from a disrupted brain transcriptome. How these transcriptional defects are decoded into a disease proteome remains unknown. We studied the proteome of Rett cerebrospinal fluid (CSF) to identify consensus Rett proteome and ontologies shared across three species. Rett CSF proteomes enriched proteins annotated to HDL lipoproteins, complement, mitochondria, citrate/pyruvate metabolism, synapse compartments, and the neurosecretory protein VGF. We used shared Rett ontologies to select analytes for orthogonal quantification and functional validation. VGF and ontologically selected CSF proteins had genotypic discriminatory capacity as determined by receiver operating characteristic analysis in Mecp2 -/y and Mecp2 -/+ . Differentially expressed CSF proteins distinguished Rett from a related neurodevelopmental disorder, CDKL5 deficiency disorder. We propose that Mecp2 mutant CSF proteomes and ontologies inform putative mechanisms and biomarkers of disease. We suggest that Rett syndrome results from synapse and metabolism dysfunction.

3.
Biol Psychiatry ; 90(11): 756-765, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34538422

RESUMEN

BACKGROUND: Chromosome 15q11-q13 duplication syndrome (Dup15q) is a neurogenetic disorder caused by duplications of the maternal copy of this region. In addition to hypotonia, motor deficits, and language impairments, patients with Dup15q commonly meet the criteria for autism spectrum disorder and have a high prevalence of seizures. It is known from mouse models that synaptic impairments are a strong component of Dup15q pathophysiology; however, cellular phenotypes that relate to seizures are less clear. The development of patient-derived induced pluripotent stem cells provides a unique opportunity to study human neurons with the exact genetic disruptions that cause Dup15q. METHODS: Here, we explored electrophysiological phenotypes in induced pluripotent stem cell-derived neurons from 4 patients with Dup15q compared with 6 unaffected control subjects, 1 patient with a 15q11-q13 paternal duplication, and 3 patients with Angelman syndrome. RESULTS: We identified several properties of Dup15q neurons that could contribute to neuronal hyperexcitability and seizure susceptibility. Compared with control neurons, Dup15q neurons had increased excitatory synaptic event frequency and amplitude, increased density of dendritic protrusions, increased action potential firing, and decreased inhibitory synaptic transmission. Dup15q neurons also showed impairments in activity-dependent synaptic plasticity and homeostatic synaptic scaling. Finally, Dup15q neurons showed an increased frequency of spontaneous action potential firing compared with control neurons, in part due to disruption of KCNQ2 potassium channels. CONCLUSIONS: Together, these data point to multiple electrophysiological mechanisms of hyperexcitability that may provide new targets for the treatment of seizures and other phenotypes associated with Dup15q.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Células Madre Pluripotentes Inducidas , Animales , Trastorno del Espectro Autista/genética , Humanos , Ratones , Neuronas , Fenotipo
4.
Front Neurol ; 9: 237, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29713304

RESUMEN

Animal models of neurodevelopmental disorders have provided invaluable insights into the molecular-, cellular-, and circuit-level defects associated with a plethora of genetic disruptions. In many cases, these deficits have been linked to changes in disease-relevant behaviors, but very few of these findings have been translated to treatments for human disease. This may be due to significant species differences and the difficulty in modeling disorders that involve deletion or duplication of multiple genes. The identification of primary underlying pathophysiology in these models is confounded by the accumulation of secondary disease phenotypes in the mature nervous system, as well as potential compensatory mechanisms. The discovery of induced pluripotent stem cell technology now provides a tool to accurately model complex genetic neurogenetic disorders. Using this technique, patient-specific cell lines can be generated and differentiated into specific subtypes of neurons that can be used to identify primary cellular and molecular phenotypes. It is clear that impairments in synaptic structure and function are a common pathophysiology across neurodevelopmental disorders, and electrophysiological analysis at the earliest stages of neuronal development is critical for identifying changes in activity and excitability that can contribute to synaptic dysfunction and identify targets for disease-modifying therapies.

5.
Nat Commun ; 8: 15038, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28436452

RESUMEN

Angelman syndrome (AS) is a neurogenetic disorder caused by deletion of the maternally inherited UBE3A allele and is characterized by developmental delay, intellectual disability, ataxia, seizures and a happy affect. Here, we explored the underlying pathophysiology using induced pluripotent stem cell-derived neurons from AS patients and unaffected controls. AS-derived neurons showed impaired maturation of resting membrane potential and action potential firing, decreased synaptic activity and reduced synaptic plasticity. These patient-specific differences were mimicked by knocking out UBE3A using CRISPR/Cas9 or by knocking down UBE3A using antisense oligonucleotides. Importantly, these phenotypes could be rescued by pharmacologically unsilencing paternal UBE3A expression. Moreover, selective effects of UBE3A disruption at late stages of in vitro development suggest that changes in action potential firing and synaptic activity may be secondary to altered resting membrane potential. Our findings provide a cellular phenotype for investigating pathogenic mechanisms underlying AS and identifying novel therapeutic strategies.


Asunto(s)
Potenciales de Acción/fisiología , Síndrome de Angelman/patología , Células Madre Pluripotentes Inducidas/fisiología , Neuronas/fisiología , Potenciales de Acción/genética , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Diferenciación Celular , Células Cultivadas , Femenino , Técnicas de Inactivación de Genes , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
Mol Autism ; 5: 44, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25694803

RESUMEN

BACKGROUND: Duplications of the chromosome 15q11-q13.1 region are associated with an estimated 1 to 3% of all autism cases, making this copy number variation (CNV) one of the most frequent chromosome abnormalities associated with autism spectrum disorder (ASD). Several genes located within the 15q11-q13.1 duplication region including ubiquitin protein ligase E3A (UBE3A), the gene disrupted in Angelman syndrome (AS), are involved in neural function and may play important roles in the neurobehavioral phenotypes associated with chromosome 15q11-q13.1 duplication (Dup15q) syndrome. METHODS: We have generated induced pluripotent stem cell (iPSC) lines from five different individuals containing CNVs of 15q11-q13.1. The iPSC lines were differentiated into mature, functional neurons. Gene expression across the 15q11-q13.1 locus was compared among the five iPSC lines and corresponding iPSC-derived neurons using quantitative reverse transcription PCR (qRT-PCR). Genome-wide gene expression was compared between neurons derived from three iPSC lines using mRNA-Seq. RESULTS: Analysis of 15q11-q13.1 gene expression in neurons derived from Dup15q iPSCs reveals that gene copy number does not consistently predict expression levels in cells with interstitial duplications of 15q11-q13.1. mRNA-Seq experiments show that there is substantial overlap in the genes differentially expressed between 15q11-q13.1 deletion and duplication neurons, Finally, we demonstrate that UBE3A transcripts can be pharmacologically rescued to normal levels in iPSC-derived neurons with a 15q11-q13.1 duplication. CONCLUSIONS: Chromatin structure may influence gene expression across the 15q11-q13.1 region in neurons. Genome-wide analyses suggest that common neuronal pathways may be disrupted in both the Angelman and Dup15q syndromes. These data demonstrate that our disease-specific stem cell models provide a new tool to decipher the underlying cellular and genetic disease mechanisms of ASD and may also offer a pathway to novel therapeutic intervention in Dup15q syndrome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA