Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(50): 15354-9, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26621728

RESUMEN

Although humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This study presents a technology that generates stable, soluble, ultrahumanized antibodies via single-step complementarity-determining region (CDR) germ-lining. For three antibodies from three separate key immune host species, binary substitution CDR cassettes were inserted into preferred human frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position. The CDR-H3 in each case was also augmented with 1 ± 1 random substitution per clone. Each library was then screened for clones with restored antigen binding capacity. Lead ultrahumanized clones demonstrated high stability, with affinity and specificity equivalent to, or better than, the parental IgG. Critically, this was mainly achieved on germ-line frameworks by simultaneously subtracting up to 19 redundant non-germ-line residues in the CDRs. This process significantly lowered non-germ-line sequence content, minimized immunogenicity risk in the final molecules and provided a heat map for the essential non-germ-line CDR residue content of each antibody. The ABS technology therefore fully optimizes the clinical potential of antibodies from rodents and alternative immune hosts, rendering them indistinguishable from fully human in a simple, single-pass process.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Regiones Determinantes de Complementariedad/inmunología , Células Germinativas/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Especificidad de Anticuerpos/inmunología , Células Clonales , Regiones Determinantes de Complementariedad/química , Simulación por Computador , Ensayo de Inmunoadsorción Enzimática , Epítopos de Linfocito T/inmunología , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/inmunología , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Biblioteca de Péptidos , Estabilidad Proteica , Estructura Terciaria de Proteína , Ratas , Alineación de Secuencia , Análisis de Secuencia de Proteína , Proteínas tau/química , Proteínas tau/inmunología
2.
J Biol Chem ; 291(3): 1267-76, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26515064

RESUMEN

Fully-human single-chain Fv (scFv) proteins are key potential building blocks of bispecific therapeutic antibodies, but they often suffer from manufacturability and clinical development limitations such as instability and aggregation. The causes of these scFv instability problems, in proteins that should be theoretically stable, remains poorly understood. To inform the future development of such molecules, we carried out a comprehensive structural analysis of the highly stabilized anti-CXCL13 scFv E10. E10 was derived from the parental 3B4 using complementarity-determining region (CDR)-restricted mutagenesis and tailored selection and screening strategies, and carries four mutations in VL-CDR3. High-resolution crystal structures of parental 3B4 and optimized E10 scFvs were solved in the presence and absence of human CXCL13. In parallel, a series of scFv mutants was generated to interrogate the individual contribution of each of the four mutations to stability and affinity improvements. In combination, these analyses demonstrated that the optimization of E10 was primarily mediated by removing clashes between both the VL and the VH, and between the VL and CXCL13. Importantly, a single, germline-encoded VL-CDR3 residue mediated the key difference between the stable and unstable forms of the scFv. This work demonstrates that, aside from being the critical mediators of specificity and affinity, CDRs may also be the primary drivers of biotherapeutic developability.


Asunto(s)
Productos Biológicos/química , Quimiocina CXCL13/antagonistas & inhibidores , Modelos Moleculares , Anticuerpos de Cadena Única/química , Sustitución de Aminoácidos , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Complejo Antígeno-Anticuerpo/química , Complejo Antígeno-Anticuerpo/metabolismo , Sitios de Unión de Anticuerpos , Productos Biológicos/metabolismo , Quimiocina CXCL13/química , Quimiocina CXCL13/metabolismo , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/metabolismo , Humanos , Cinética , Mutación , Agregado de Proteínas , Conformación Proteica , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/metabolismo , Solubilidad , Difracción de Rayos X
3.
J Immunol ; 188(1): 322-33, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22131336

RESUMEN

Examination of 1269 unique naive chicken V(H) sequences showed that the majority of positions in the framework (FW) regions were maintained as germline, with high mutation rates observed in the CDRs. Many FW mutations could be clearly related to the modulation of CDR structure or the V(H)-V(L) interface. CDRs 1 and 2 of the V(H) exhibited frequent mutation in solvent-exposed positions, but conservation of common structural residues also found in human CDRs at the same positions. In comparison with humans and mice, the chicken CDR3 repertoire was skewed toward longer sequences, was dominated by small amino acids (G/S/A/C/T), and had higher cysteine (chicken, 9.4%; human, 1.6%; and mouse, 0.25%) but lower tyrosine content (chicken, 9.2%; human, 16.8%; and mouse 26.4%). A strong correlation (R(2) = 0.97) was observed between increasing CDR3 length and higher cysteine content. This suggests that noncanonical disulfides are strongly favored in chickens, potentially increasing CDR stability and complexity in the topology of the combining site. The probable formation of disulfide bonds between CDR3 and CDR1, FW2, or CDR2 was also observed, as described in camelids. All features of the naive repertoire were fully replicated in the target-selected, phage-displayed repertoire. The isolation of a chicken Fab with four noncanonical cysteines in the V(H) that exhibits 64 nM (K(D)) binding affinity for its target proved these constituents to be part of the humoral response, not artifacts. This study supports the hypothesis that disulfide bond-constrained CDR3s are a structural diversification strategy in the restricted germline v-gene repertoire of chickens.


Asunto(s)
Sustitución de Aminoácidos , Pollos/genética , Regiones Determinantes de Complementariedad/genética , Cadenas Pesadas de Inmunoglobulina/genética , Mutación , Animales , Afinidad de Anticuerpos/genética , Camelus/genética , Camelus/inmunología , Pollos/inmunología , Regiones Determinantes de Complementariedad/inmunología , Disulfuros/inmunología , Humanos , Cadenas Pesadas de Inmunoglobulina/inmunología , Ratones , Estabilidad Proteica , Especificidad de la Especie
4.
J Biol Chem ; 287(53): 44425-34, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23148212

RESUMEN

Highly specific antibodies to phosphoepitopes are valuable tools to study phosphorylation in disease states, but their discovery is largely empirical, and the molecular mechanisms mediating phosphospecific binding are poorly understood. Here, we report the generation and characterization of extremely specific recombinant chicken antibodies to three phosphoepitopes on the Alzheimer disease-associated protein tau. Each antibody shows full specificity for a single phosphopeptide. The chimeric IgG pT231/pS235_1 exhibits a K(D) of 0.35 nm in 1:1 binding to its cognate phosphopeptide. This IgG is murine ortholog-cross-reactive, specifically recognizing the pathological form of tau in brain samples from Alzheimer patients and a mouse model of tauopathy. To better understand the underlying binding mechanisms allowing such remarkable specificity, we determined the structure of pT231/pS235_1 Fab in complex with its cognate phosphopeptide at 1.9 Å resolution. The Fab fragment exhibits novel complementarity determining region (CDR) structures with a "bowl-like" conformation in CDR-H2 that tightly and specifically interacts with the phospho-Thr-231 phosphate group, as well as a long, disulfide-constrained CDR-H3 that mediates peptide recognition. This binding mechanism differs distinctly from either peptide- or hapten-specific antibodies described to date. Surface plasmon resonance analyses showed that pT231/pS235_1 binds a truly compound epitope, as neither phosphorylated Ser-235 nor free peptide shows any measurable binding affinity.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Anticuerpos/inmunología , Epítopos/inmunología , Proteínas tau/inmunología , Enfermedad de Alzheimer/genética , Secuencia de Aminoácidos , Animales , Anticuerpos/química , Anticuerpos/genética , Encéfalo/metabolismo , Pollos , Epítopos/química , Epítopos/genética , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Fosforilación , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Anal Biochem ; 410(1): 1-6, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20920456

RESUMEN

Over the past 10 years, a growing field of research supporting the value of myeloperoxidase (MPO) as a prognostic indicator in acute cardiac pathophysiologies has emerged. The availability of a rapid and disposable MPO detection platform would enable research clinicians to more readily assess MPO indications for guiding therapy and also facilitate clinicians at the patient interface to readily adopt MPO testing and potentially drive more informed prognoses. Here we describe the isolation of a high-affinity avian MPO-specific recombinant antibody panel using phage display. Rapid isolation of a suitable single-chain variable fragment (scFv) antibody was facilitated using a surface plasmon resonance (SPR)-based "off-rate ranking" screening process. The selected scFv was then successfully incorporated into a rapid, simple, and sensitive one-step lateral flow immunoassay (LFIA) for the detection of MPO. This "one-step" feature of the developed assay was made possible by the scFv's strong affinity for MPO, obviating the need for sandwich signal enhancement steps. The assay's rapid performance was also further enhanced by exploiting the intrinsic enzymatic properties of MPO in its final detection. Use of the optimized LFIA facilitated the sensitive detection of MPO in MPO-depleted serum within clinically relevant reference ranges.


Asunto(s)
Afinidad de Anticuerpos , Inmunoensayo/métodos , Peroxidasa/análisis , Proteínas Recombinantes/inmunología , Anticuerpos de Cadena Única/inmunología , Animales , Cromatografía de Afinidad , Enzimas Inmovilizadas/análisis , Enzimas Inmovilizadas/sangre , Enzimas Inmovilizadas/inmunología , Humanos , Biblioteca de Péptidos , Peroxidasa/sangre , Peroxidasa/inmunología , Proteínas Recombinantes/aislamiento & purificación , Anticuerpos de Cadena Única/aislamiento & purificación , Factores de Tiempo
6.
MAbs ; 13(1): 1999195, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34780320

RESUMEN

Antibody-based drugs, which now represent the dominant biologic therapeutic modality, are used to modulate disparate signaling pathways across diverse disease indications. One fundamental premise that has driven this therapeutic antibody revolution is the belief that each monoclonal antibody exhibits exquisitely specific binding to a single-drug target. Herein, we review emerging evidence in antibody off-target binding and relate current key findings to the risk of failure in therapeutic development. We further summarize the current state of understanding of structural mechanisms underpining the different phenomena that may drive polyreactivity and polyspecificity, and highlight current thinking on how de-risking studies may be best implemented in the screening triage. We conclude with a summary of what we believe to be key observations in the field to date, and a call for the wider antibody research community to work together to build the tools needed to maximize our understanding in this nascent area.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Monoclonales/uso terapéutico , Especificidad de Anticuerpos , Factores de Riesgo
8.
Bioorg Med Chem Lett ; 20(21): 6237-41, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20843687

RESUMEN

Several structure-guided optimisation strategies were explored in order to improve the hERG selectivity profile of cathepsin K inhibitor 1, whilst maintaining its otherwise excellent in vitro and in vivo profile. Ultimately, attenuation of clogP and pK(a) properties proved a successful approach and led to the discovery of a potent analogue 23, which, in addition to the desired selectivity over hERG (>1000-fold), displayed a highly attractive overall profile.


Asunto(s)
Catepsina K/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/efectos de los fármacos , Nitrilos/síntesis química , Nitrilos/farmacología , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/farmacología , Pirimidinas/síntesis química , Pirimidinas/farmacología , Diseño de Fármacos , Descubrimiento de Drogas , Indicadores y Reactivos , Modelos Moleculares , Curva ROC , Relación Estructura-Actividad , Torsades de Pointes/tratamiento farmacológico
9.
MAbs ; 12(1): 1755000, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32329655

RESUMEN

The role of brain-derived neurotrophic factor (BDNF) signaling in chronic pain has been well documented. Given the important central role of BDNF in long term plasticity and memory, we sought to engineer a high affinity, peripherally-restricted monoclonal antibody against BDNF to modulate pain. BDNF shares 100% sequence homology across human and rodents; thus, we selected chickens as an alternative immune host for initial antibody generation. Here, we describe the affinity optimization of complementarity-determining region-grafted, chicken-derived R3bH01, an anti-BDNF antibody specifically blocking the TrkB receptor interaction. Antibody optimization led to the identification of B30, which has a > 300-fold improvement in affinity based on BIAcore, an 800-fold improvement in potency in a cell-based pERK assay and demonstrates exquisite selectivity over related neurotrophins. Affinity improvements measured in vitro translated to in vivo pharmacological activity, with B30 demonstrating a 30-fold improvement in potency over parental R3bH01 in a peripheral nerve injury model. We further demonstrate that peripheral BDNF plays a role in maintaining the plasticity of sensory neurons following nerve damage, with B30 reversing neuron hyperexcitability associated with heat and mechanical stimuli in a dose-dependent fashion. In summary, our data demonstrate that effective sequestration of BDNF via a high affinity neutralizing antibody has potential utility in modulating the pathophysiological mechanisms that drive chronic pain states.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Afinidad de Anticuerpos/inmunología , Factor Neurotrófico Derivado del Encéfalo/inmunología , Dolor Crónico/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Pollos , Dolor Crónico/fisiopatología , Dolor Crónico/prevención & control , Modelos Animales de Enfermedad , Humanos , Masculino , Dimensión del Dolor , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/fisiopatología , Traumatismos de los Nervios Periféricos/prevención & control , Unión Proteica/efectos de los fármacos , Ratas Sprague-Dawley , Receptor trkB/metabolismo
10.
MAbs ; 11(5): 809-811, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31122133

RESUMEN

We live in an era of rapidly advancing computing capacity and algorithmic sophistication. "Big data" and "artificial intelligence"find progressively wider use in all spheres of human activity, including healthcare. A diverse array of computational technologies is being applied with increasing frequency to antibody drug research and development (R&D). Their successful applications are met with great interest due to the potential for accelerating and streamlining the antibody R&D process. While this excitement is very likely justified in the long term, it is less likely that the transition from the first use to routine practice will escape challenges that other new technologies had experienced before they began to blossom. This transition typically requires many cycles of iterative learning that rely on the deconstruction of the technology to understand its pitfalls and define vectors for optimization. The study by Vasquez et al. identifies a key obstacle to such learning: the lack of transparency regarding methodology in computational antibody design reports, which has the potential to mislead the community efforts.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Diseño de Fármacos , Sitios de Unión de Anticuerpos , Simulación por Computador , Epítopos/química , Humanos , Ingeniería de Proteínas
11.
MAbs ; 11(1): 26-44, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541416

RESUMEN

Monoclonal anti-programmed cell death 1 (PD1) antibodies are successful cancer therapeutics, but it is not well understood why individual antibodies should have idiosyncratic side-effects. As the humanized antibody SHR-1210 causes capillary hemangioma in patients, a unique toxicity amongst anti-PD1 antibodies, we performed human receptor proteome screening to identify nonspecific interactions that might drive angiogenesis. This screen identified that SHR-1210 mediated aberrant, but highly selective, low affinity binding to human receptors such as vascular endothelial growth factor receptor 2 (VEGFR2), frizzled class receptor 5 and UL16 binding protein 2 (ULBP2). SHR-1210 was found to be a potent agonist of human VEGFR2, which may thereby drive hemangioma development via vascular endothelial cell activation. The v-domains of SHR-1210's progenitor murine monoclonal antibody 'Mab005' also exhibited off-target binding and agonism of VEGFR2, proving that the polyspecificity was mediated by the original mouse complementarity-determining regions (CDRs), and had survived the humanization process. Molecular remodelling of SHR-1210 by combinatorial CDR mutagenesis led to deimmunization, normalization of binding affinity to human and cynomolgus PD1, and increased potency in PD1/PD-L1 blockade. Importantly, CDR optimization also ablated all off-target binding, rendering the resulting antibodies fully PD1-specific. As the majority of changes to the paratope were found in the light chain CDRs, the germlining of this domain drove the ablation of off-target binding. The combination of receptor proteome screening and optimization of the antibody binding interface therefore succeeded in generating novel, higher-potency, specificity-enhanced therapeutic IgGs from a single, clinically sub-optimal progenitor. This study showed that highly-specific off-target binding events might be an under-appreciated phenomenon in therapeutic antibody development, but that these unwanted properties can be fully ameliorated by paratope refinement.


Asunto(s)
Anticuerpos Monoclonales Humanizados/inmunología , Especificidad de Anticuerpos/inmunología , Sitios de Unión de Anticuerpos/inmunología , Ingeniería de Proteínas/métodos , Animales , Anticuerpos Monoclonales Humanizados/genética , Especificidad de Anticuerpos/genética , Sitios de Unión de Anticuerpos/genética , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/inmunología , Humanos , Macaca fascicularis , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/agonistas
12.
MAbs ; 10(2): 244-255, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29271699

RESUMEN

Implementation of in vitro assays that correlate with in vivo human pharmacokinetics (PK) would provide desirable preclinical tools for the early selection of therapeutic monoclonal antibody (mAb) candidates with minimal non-target-related PK risk. Use of these tools minimizes the likelihood that mAbs with unfavorable PK would be advanced into costly preclinical and clinical development. In total, 42 mAbs varying in isotype and soluble versus membrane targets were tested in in vitro and in vivo studies. MAb physicochemical properties were assessed by measuring non-specific interactions (DNA- and insulin-binding ELISA), self-association (affinity-capture self-interaction nanoparticle spectroscopy) and binding to matrix-immobilized human FcRn (surface plasmon resonance and column chromatography). The range of scores obtained from each in vitro assay trended well with in vivo clearance (CL) using both human FcRn transgenic (Tg32) mouse allometrically projected human CL and observed human CL, where mAbs with high in vitro scores resulted in rapid CL in vivo. Establishing a threshold value for mAb CL in human of 0.32 mL/hr/kg enabled refinement of thresholds for each in vitro assay parameter, and using a combinatorial triage approach enabled the successful differentiation of mAbs at high risk for rapid CL (unfavorable PK) from those with low risk (favorable PK), which allowed mAbs requiring further characterization to be identified. Correlating in vitro parameters with in vivo human CL resulted in a set of in vitro tools for use in early testing that would enable selection of mAbs with the greatest likelihood of success in the clinic, allowing costly late-stage failures related to an inadequate exposure profile, toxicity or lack of efficacy to be avoided.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Descubrimiento de Drogas/métodos , Técnicas In Vitro , Modelos Animales , Animales , Humanos , Ratones , Ratones Transgénicos
13.
J Immunol Methods ; 323(2): 172-9, 2007 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-17532001

RESUMEN

Advances in molecular evolution strategies have made it possible to identify antibodies with exquisite specificities and also to fine-tune their biophysical properties for practically any specified application. Depending on the desired function, antibody/antigen interactions can be long-lived or short-lived and, therefore, particular attention is needed when seeking to identify antibodies with specific reaction-rate and affinity properties. Surface plasmon resonance (SPR) biosensors routinely generate sensitive and reliable kinetic data from antibody/antigen interactions for both therapeutic and diagnostic applications. However, many kinetic-based screening assays require rigorous sample preparation and purification prior to analysis. To ameliorate this problem, we developed a rapid and reliable assay for characterising recombinant scFv antibody fragments, directly from crude bacterial lysates. Ninety-six scFv antibodies derived from chickens immunised with C-reactive protein (CRP) were selected by phage display and evaluated using the Biacore A100 protein interaction array system. Antibodies were captured from crude bacterial extracts on the sensor chip surface and ranked based on the percentage of the complex left (% left) after dissociation in buffer. Kinetic rate constants (k(a) and k(d)) and affinity (K(D)) data were obtained for six clones that bound monomeric CRP across a broad affinity range (2.54 x 10(-8) to 3.53 x 10(-10) M). Using this assay format the A100 biosensor yielded high quality kinetic data, permitting the screening of nearly 400 antibody clones per day.


Asunto(s)
Pollos/inmunología , Evolución Molecular Dirigida , Región Variable de Inmunoglobulina/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Resonancia por Plasmón de Superficie/métodos , Animales , Proteína C-Reactiva/inmunología , Escherichia coli/química , Escherichia coli/genética , Región Variable de Inmunoglobulina/genética , Cinética , Proteínas Recombinantes/genética
14.
Methods Mol Biol ; 1485: 319-338, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27730560

RESUMEN

High-affinity, highly specific binding proteins are a key class of molecules used in the development of new affinity chromatography methods. Traditionally, antibody-based methods have relied on the use of immunoglobulins purified from immune animal sera, from egg yolks, or from murine monoclonal hybridoma supernatants. To accelerate and refine the reagent antibody generation process, we have developed optimized methods that allow the rapid assembly of scFv libraries from chickens immunized with pools of immunogens. These methods allow the simplified generation of a single, moderately sized library of single chain Fv (scFv) and the subsequent isolation of diverse, high affinity, and high specificity monoclonals for each individual immunogen, via phage display. Using these methods, antibodies can be derived that exhibit the desired selectivity, including exquisite specificity or cross-reactivity to multiple orthologues of the same protein.


Asunto(s)
Afinidad de Anticuerpos/inmunología , Especificidad de Anticuerpos/inmunología , Técnicas de Visualización de Superficie Celular , Anticuerpos de Cadena Única/biosíntesis , Anticuerpos de Cadena Única/inmunología , Animales , Antígenos/inmunología , Pollos/inmunología , Epítopos/inmunología , Ratones , Biblioteca de Péptidos , Proteínas Recombinantes de Fusión , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética
15.
Methods Mol Biol ; 1485: 85-99, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27730550

RESUMEN

Antibodies are critical reagents in many fundamental biochemical methods such as affinity chromatography, enzyme-linked immunosorbent assays (ELISA), flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry techniques. As our understanding of the proteome becomes more complex, demand is rising for rapidly generated antibodies of higher specificity than ever before. It is therefore surprising that few investigators have moved beyond the classical methods of antibody production in their search for new reagents. Despite their long-standing efficacy, recombinant antibody generation technologies such as phage display are still largely the tools of biotechnology companies or research groups with a direct interest in protein engineering. In this chapter, we discuss the inherent limitations of classical polyclonal and monoclonal antibody generation and highlight an attractive alternative: generating high-specificity, high-affinity recombinant antibodies from alternative immune sources such as chickens, via phage display.


Asunto(s)
Técnicas de Visualización de Superficie Celular , Animales , Anticuerpos , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Pollos/inmunología , Cromatografía de Afinidad , Proteínas Recombinantes de Fusión , Anticuerpos de Cadena Única
16.
Acad Med ; 81(1): 50-6, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16377820

RESUMEN

PURPOSE: To examine whether duty-hour restrictions have been consequential for various aspects of the work of surgical faculty and if those consequences differ for faculty in academic and nonacademic general surgery residency programs. METHOD: Questionnaires were distributed in 2004 to 233 faculty members in five academic and four nonacademic U.S. residency programs in general surgery. Participation was restricted to those who had been faculty for at least one year. Ten items on the questionnaire probed faculty work experiences. Results include means, percentages, and t-tests on mean differences. Of the 146 faculty members (63%) who completed the questionnaire, 101 volunteered to be interviewed. Of these, 28 were randomly chosen for follow-up interviews that probed experiences and rationales underlying items on the questionnaire. Interview transcripts (187 single-spaced pages) were analyzed for main themes. RESULTS: Questionnaire respondents and interviewees associated duty-hour restrictions with lowered faculty expectations and standards for residents, little change in the supervision of residents, a loss of time for teaching, increased work and stress, and less satisfaction. No significant differences in these perceptions (p < or = .05) were found for faculty in academic and nonacademic programs. Main themes from the interviews included a shift of routine work from residents to faculty, a transfer of responsibility to faculty, more frequent skill gaps at night, a loss of time for research, and the challenges of controlling residents' hours. CONCLUSIONS: Duty-hour restrictions have been consequential for the work of surgical faculty. Faculty should not be overlooked in future studies of duty-hour restrictions.


Asunto(s)
Docentes Médicos/organización & administración , Cirugía General/educación , Internado y Residencia/organización & administración , Admisión y Programación de Personal , Carga de Trabajo , Actitud del Personal de Salud , Recolección de Datos , Femenino , Humanos , Masculino , Innovación Organizacional , Estados Unidos
17.
Am J Surg ; 191(1): 11-6, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16399099

RESUMEN

BACKGROUND: This study examined how surgical residents and faculty assessed the first year of the Accreditation Council for Graduate Medical Education duty-hour restrictions. METHODS: Questionnaires were administered in 9 general-surgery programs during the summer of 2004; response rates were 63% for faculty and 58% for residents (N = 259). Questions probed patient care, the residency program, quality of life, and overall assessments of the duty-hour restrictions. Results include the means, mean deviations, percentage who agree or strongly agree with the hour restrictions, and significance tests. RESULTS: Although most support the restrictions, few maintain that they improved surgical training or patient care. Faculty and residents differed (P < or = .05) on 16 of 21 items. Every difference shows that residents view the restrictions more favorably than faculty. The sex of the resident shaped the magnitude of the gap for 11 of 21 items. CONCLUSIONS: Few believe that duty-hour restrictions improve patient care or resident training. Residents, especially female residents, view the restrictions more favorably than faculty.


Asunto(s)
Docentes Médicos , Cirugía General/organización & administración , Internado y Residencia , Admisión y Programación de Personal/organización & administración , Actitud del Personal de Salud , Educación de Postgrado en Medicina/organización & administración , Evaluación Educacional , Femenino , Humanos , Masculino , Atención al Paciente/normas , Factores de Tiempo , Tolerancia al Trabajo Programado , Recursos Humanos , Carga de Trabajo
18.
Antibodies (Basel) ; 5(1)2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-31557987

RESUMEN

Bispecific antibodies offer a promising approach for the treatment of cancer but can be challenging to engineer and manufacture. Here we report the development of PF-06671008, an extended-half-life dual-affinity re-targeting (DART®) bispecific molecule against P-cadherin and CD3 that demonstrates antibody-like properties. Using phage display, we identified anti-P-cadherin single chain Fv (scFv) that were subsequently affinity-optimized to picomolar affinity using stringent phage selection strategies, resulting in low picomolar potency in cytotoxic T lymphocyte (CTL) killing assays in the DART format. The crystal structure of this disulfide-constrained diabody shows that it forms a novel compact structure with the two antigen binding sites separated from each other by approximately 30 Å and facing approximately 90° apart. We show here that introduction of the human Fc domain in PF-06671008 has produced a molecule with an extended half-life (-4.4 days in human FcRn knock-in mice), high stability (Tm1 > 68 °C), high expression (>1 g/L), and robust purification properties (highly pure heterodimer), all with minimal impact on potency. Finally, we demonstrate in vivo anti-tumor efficacy in a human colorectal/human peripheral blood mononuclear cell (PBMC) co-mix xenograft mouse model. These results suggest PF-06671008 is a promising new bispecific for the treatment of patients with solid tumors expressing P-cadherin.

19.
J Mol Biol ; 425(10): 1712-30, 2013 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-23429058

RESUMEN

We have generated large libraries of single-chain Fv antibody fragments (>10(10) transformants) containing unbiased amino acid diversity that is restricted to the central combining site of the stable, well-expressed DP47 and DPK22 germline V-genes. Library WySH2A was constructed to examine the potential for synthetic complementarity-determining region (CDR)-H3 diversity to act as the lone source of binding specificity. Library WySH2B was constructed to assess the necessity for diversification in both the H3 and L3. Both libraries provided diverse, specific antibodies, yielding a total of 243 unique hits against 7 different targets, but WySH2B produced fewer hits than WySH2A when selected in parallel. WySH2A also consistently produced hits of similar quality to WySH2B, demonstrating that the diversification of the CDR-L3 reduces library fitness. Despite the absence of deliberate bias in the library design, CDR length was strongly associated with the number of hits produced, leading to a functional loop length distribution profile that mimics the biases observed in the natural repertoire. A similar trend was also observed for the CDR-L3. After target selections, several key amino acids were enriched in the CDR-H3 (e.g., small and aromatic residues) while others were reduced (e.g., strongly charged residues) in a manner that was specific to position, preferentially occurred in CDR-H3 stem positions, and tended towards residues associated with loop stabilization. As proof of principle for the WySH2 libraries to produce viable lead candidate antibodies, 114 unique hits were produced against Delta-like ligand 4 (DLL4). Leads exhibited nanomolar binding affinities, highly specific staining of DLL4+ cells, and biochemical neutralization of DLL4-NOTCH1 interaction.


Asunto(s)
Especificidad de Anticuerpos , Regiones Determinantes de Complementariedad/inmunología , Regiones Determinantes de Complementariedad/uso terapéutico , Biblioteca de Péptidos , Anticuerpos de Cadena Única/biosíntesis , Anticuerpos de Cadena Única/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales , Animales , Especificidad de Anticuerpos/genética , Proteínas de Unión al Calcio , Clonación Molecular , Regiones Determinantes de Complementariedad/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/inmunología , Ratones , Modelos Moleculares , Mutación , Receptor Notch1/antagonistas & inhibidores , Receptor Notch1/genética , Receptor Notch1/inmunología , Anticuerpos de Cadena Única/genética
20.
MAbs ; 5(6): 882-95, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23995618

RESUMEN

While myriad molecular formats for bispecific antibodies have been examined to date, the simplest structures are often based on the scFv. Issues with stability and manufacturability in scFv-based bispecific molecules, however, have been a significant hindrance to their development, particularly for high-concentration, stable formulations that allow subcutaneous delivery. Our aim was to generate a tetravalent bispecific molecule targeting two inflammatory mediators for synergistic immune modulation. We focused on an scFv-Fc-scFv format, with a flexible (A4T)3 linker coupling an additional scFv to the C-terminus of an scFv-Fc. While one of the lead scFvs isolated directly from a naïve library was well-behaved and sufficiently potent, the parental anti-CXCL13 scFv 3B4 required optimization for affinity, stability, and cynomolgus ortholog cross-reactivity. To achieve this, we eschewed framework-based stabilizing mutations in favor of complementarity-determining region (CDR) mutagenesis and re-selection for simultaneous improvements in both affinity and thermal stability. Phage-displayed 3B4 CDR-mutant libraries were used in an aggressive "hammer-hug" selection strategy that incorporated thermal challenge, functional, and biophysical screening. This approach identified leads with improved stability and>18-fold, and 4,100-fold higher affinity for both human and cynomolgus CXCL13, respectively. Improvements were exclusively mediated through only 4 mutations in VL-CDR3. Lead scFvs were reformatted into scFv-Fc-scFvs and their biophysical properties ranked. Our final candidate could be formulated in a standard biopharmaceutical platform buffer at 100 mg/ml with<2% high molecular weight species present after 7 weeks at 4 °C and viscosity<15 cP. This workflow has facilitated the identification of a truly manufacturable scFv-based bispecific therapeutic suitable for subcutaneous administration.


Asunto(s)
Anticuerpos Biespecíficos/genética , Regiones Determinantes de Complementariedad/genética , Ingeniería de Proteínas , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/metabolismo , Animales , Bacteriófagos/genética , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inyecciones Subcutáneas , Biblioteca de Péptidos , Estabilidad Proteica , Ratas , Anticuerpos de Cadena Única/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA