Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 186: 107827, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37257797

RESUMEN

The blue-ringed octopus species complex (Hapalochlaena spp.), known to occur from Southern Australia to Japan, currently contains four formally described species (Hapalochlaena maculosa, Hapalochlaena fasciata, Hapalochlaena lunulata and Hapalochlaena nierstraszi). These species are distinguished based on morphological characters (iridescent blue rings and/or lines) along with reproductive strategies. However, the observation of greater morphological diversity than previously captured by the current taxonomic framework indicates that a revision is required. To examine species boundaries within the genus we used mitochondrial (12S rRNA, 16S rRNA, cytochrome c oxidase subunit 1 [COI], cytochrome c oxidase subunit 3 [COIII] and cytochrome b [Cytb]) and genome-wide SNP data (DaRT seq) from specimens collected across its geographic range including variations in depth from 3 m to >100 m. This investigation indicates substantially greater species diversity present within the genus Hapalochlaena than is currently described. We identified 10,346 SNPs across all locations, which when analysed support a minimum of 11 distinct clades. Bayesian phylogenetic analysis of the mitochondrial COI gene on a more limited sample set dates the diversification of the genus to âˆ¼30 mya and corroborates eight of the lineages indicated by the SNP analyses. Furthermore, we demonstrate that the diagnostic lined patterning of H. fasciata found in North Pacific waters and NSW, Australia is polyphyletic and therefore likely the result of convergent evolution. Several "deep water" (>100 m) lineages were also identified in this study with genetic convergence likely to be driven by external selective pressures. Examination of morphological traits, currently being undertaken in a parallel morphological study, is required to describe additional species within the complex.


Asunto(s)
Octopodiformes , Animales , Filogenia , Octopodiformes/genética , ARN Ribosómico 16S/genética , Complejo IV de Transporte de Electrones/genética , Teorema de Bayes , Polimorfismo de Nucleótido Simple , Asia
2.
Proc Biol Sci ; 277(1696): 2967-71, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20484241

RESUMEN

Argonauts (Cephalopoda: Argonautidae) are a group of rarely encountered open-ocean pelagic octopuses with benthic ancestry. Female argonauts inhabit a brittle 'paper nautilus' shell, the role of which has puzzled naturalists for millennia. The primary role attributed to the shell has been as a receptacle for egg deposition and brooding. Our observations of wild argonauts have revealed that the thin calcareous shell also functions as a hydrostatic structure, employed by the female argonaut to precisely control buoyancy at varying depths. Female argonauts use the shell to 'gulp' a measured volume of air at the sea surface, seal off the captured gas using flanged arms and forcefully dive to a depth where the compressed gas buoyancy counteracts body weight. This process allows the female argonaut to attain neutral buoyancy at depth and potentially adjust buoyancy to counter the increased (and significant) weight of eggs during reproductive periods. Evolution of this air-capture strategy enables this negatively buoyant octopus to survive free of the sea floor. This major shift in life mode from benthic to pelagic shows strong evolutionary parallels with the origins of all cephalopods, which attained gas-mediated buoyancy via the closed-chambered shells of the true nautiluses and their relatives.


Asunto(s)
Conducta Animal , Decapodiformes/fisiología , Natación/fisiología , Aire , Presión del Aire , Animales , Decapodiformes/anatomía & histología , Buceo , Femenino , Reproducción/fisiología
3.
Ecol Evol ; 8(4): 2253-2267, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29468041

RESUMEN

The southern blue-ringed octopus, Hapalochlaena maculosa (Hoyle, 1883) lacks a planktonic dispersal phase, yet ranges across Australia's southern coastline. This species' brief and holobenthic life history suggests gene flow might be limited, leaving distant populations prone to strong genetic divergence. This study used 17,523 genome-wide SNP loci to investigate genetic structuring and local adaptation patterns of H. maculosa among eight sampling sites along its reported range. Within sites, interrelatedness was very high, consistent with the limited dispersal of this taxon. However, inbreeding coefficients were proportionally lower among sites where substructuring was not detected, suggesting H. maculosa might possess a mechanism for inbreeding avoidance. Genetic divergence was extremely high among all sites, with the greatest divergence observed between both ends of the distribution, Fremantle, WA, and Stanley, TAS. Genetic distances closely followed an isolation by geographic distance pattern. Outlier analyses revealed distinct selection signatures at all sites, with the strongest divergence reported between Fremantle and the other Western Australian sites. Phylogenetic reconstructions using the described sister taxon H. fasciata (Hoyle, 1886) further supported that the genetic divergence between distal H. maculosa sites in this study was equivalent to that of between established heterospecifics within this genus. However, it is advocated that taxonomic delineations within this species should be made with caution. These data indicate that H. maculosa forms a clinal species pattern across its geographic range, with gene flow present through allele sharing between adjacent populations. Morphological investigations are recommended for a robust resolution of the taxonomic identity and ecotype boundaries of this species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA