Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biopolymers ; 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28948603

RESUMEN

A scalable, viable process was developed for the Fibroblast Growth Factor 21 (FGF21) protein-antibody conjugate, CVX-343, an extended half-life therapeutic for the treatment of metabolic disease. CVX-343 utilizes the CovX antibody scaffold technology platform that was specifically developed for peptide and protein half-life extension. CVX-343 is representative of a growing number of complex novel peptide- and protein-based bioconjugate molecules currently being explored as therapeutic candidates. The complexity of these bioconjugates, assembled using well-established chemistries, can lead to very difficult production schemes requiring multiple starting materials and a combination of diverse technologies. Key improvements had to be made to the original CVX-343 Phase 1 manufacturing process in preparation for Phase 3 and commercial manufacturing. A strategy of minimizing FGF21A129C dimerization and stabilizing the FGF21A129C Drug Substance Intermediate (DSI), linker, and activated FGF21 intermediate was pursued. The use of tris(2-carboxyethyl)phosphine (TCEP) to prevent FGF21A129C dimerization through disulfide formation was eliminated. FGF21A129C dimerization and linker hydrolysis were minimized by formulating and activating FGF21A129C at acidic instead of neutral pH. An activation use test was utilized to guide FGF21A129C pooling in order to minimize misfolds, dimers, and misfolded dimers in the FGF21A129C DSI. After final optimization of reaction conditions, a process was established that reduced the consumption of FGF21A129C by 36% (from 4.7 to 3.0 equivalents) and the consumption of linker by 55% (from 1.4 to 0.95 equivalents for a smaller required amount of FGF21A129C ). The overall process time was reduced from ∼5 to ∼3 days. The product distribution improved from containing ∼60% to ∼75% desired bifunctionalized (+2 FGF21) FGF21-antibody conjugate in the crude conjugation mixture and from ∼80% to ∼85% in the final CVX-343 Drug Substance (DS), while maintaining the same overall process yield based on antibody scaffold input.

2.
Mol Pharm ; 9(5): 1291-301, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22480236

RESUMEN

PEGylation of therapeutic proteins is commonly used to extend half-lives and to reduce immunogenicity. However, reports of antibodies toward PEGylated proteins and of poly(ethylene glycol) (PEG) accumulation suggest that efficacy and safety concerns may arise. To understand the relationship among the pharmacology, immunogenicity, and toxicology of PEGylated proteins, we require knowledge of the disposition and metabolic fate of both the drug and the polymer moieties. The analysis of PEG by standard spectrophotometric or mass spectrometric techniques is problematic. Consequently, we have examined and compared two independent analytical approaches, based on gel electrophoresis and nuclear magnetic resonance (NMR) spectroscopy, to determine the biological fate of a model PEGylated protein, (40K)PEG-insulin, within a rat model. Both immunoblotting with an antibody to PEG and NMR analyses (LOD 0.5 µg/mL for both assays) indicated that the PEG moiety remained detectable for several weeks in both serum and urine following intravenous administration of (40K)PEG-insulin (4 mg/kg). In contrast, Western blotting with anti-insulin IgG indicated that the terminal half-life of the insulin moiety was far shorter than that of the PEG, providing clear evidence of conjugate cleavage. The application of combined analytical techniques in this way thus allows simultaneous independent monitoring of both protein and polymer elements of a PEGylated molecule. These methodologies also provide direct evidence for cleavage and definition of the chemical species present in biological fluids which may have toxicological consequences due to unconjugated PEG accumulation or immunogenic recognition of the uncoupled protein.


Asunto(s)
Polietilenglicoles/química , Proteínas/química , Proteínas/metabolismo , Animales , Western Blotting , Electroforesis en Gel de Poliacrilamida , Insulina/química , Espectroscopía de Resonancia Magnética , Masculino , Proteínas/farmacocinética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA