RESUMEN
Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.
Asunto(s)
Antiinflamatorios , Glucocorticoides , Inflamación , Macrófagos , Mitocondrias , Succinatos , Animales , Femenino , Humanos , Masculino , Ratones , Antiinflamatorios/farmacología , Carboxiliasas/metabolismo , Carboxiliasas/antagonistas & inhibidores , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Citocinas/inmunología , Citocinas/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Hidroliasas/deficiencia , Hidroliasas/genética , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Activación Enzimática/efectos de los fármacosRESUMEN
Fibroblasts are polymorphic cells with pleiotropic roles in organ morphogenesis, tissue homeostasis and immune responses. In fibrotic diseases, fibroblasts synthesize abundant amounts of extracellular matrix, which induces scarring and organ failure. By contrast, a hallmark feature of fibroblasts in arthritis is degradation of the extracellular matrix because of the release of metalloproteinases and degrading enzymes, and subsequent tissue destruction. The mechanisms that drive these functionally opposing pro-fibrotic and pro-inflammatory phenotypes of fibroblasts remain unknown. Here we identify the transcription factor PU.1 as an essential regulator of the pro-fibrotic gene expression program. The interplay between transcriptional and post-transcriptional mechanisms that normally control the expression of PU.1 expression is perturbed in various fibrotic diseases, resulting in the upregulation of PU.1, induction of fibrosis-associated gene sets and a phenotypic switch in extracellular matrix-producing pro-fibrotic fibroblasts. By contrast, pharmacological and genetic inactivation of PU.1 disrupts the fibrotic network and enables reprogramming of fibrotic fibroblasts into resting fibroblasts, leading to regression of fibrosis in several organs.
Asunto(s)
Diferenciación Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/genética , Fibrosis/patología , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Animales , Secuencia de Bases , Epigénesis Genética , Femenino , Humanos , Inflamación/genética , Inflamación/patología , Masculino , Ratones , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Transactivadores/antagonistas & inhibidoresRESUMEN
OBJECTIVE: We sought to investigate the role of interleukin (IL)-20 in IBD and experimental colitis. DESIGN: Experimental colitis was induced in mice deficient in components of the IL-20 and signal transducer and activator of transcription (STAT)2 signalling pathways. In vivo imaging, high-resolution mini-endoscopy and histology were used to assess intestinal inflammation. We further used RNA-sequencing (RNA-Seq), RNAScope and Gene Ontology analysis, western blot analysis and co-immunoprecipitation, confocal microscopy and intestinal epithelial cell (IEC)-derived three-dimensional organoids to investigate the underlying molecular mechanisms. Results were validated using samples from patients with IBD and non-IBD control subjects by a combination of RNA-Seq, organoids and immunostainings. RESULTS: In IBD, IL20 levels were induced during remission and were significantly higher in antitumour necrosis factor responders versus non-responders. IL-20RA and IL-20RB were present on IECs from patients with IBD and IL-20-induced STAT3 and suppressed interferon (IFN)-STAT2 signalling in these cells. In IBD, experimental dextran sulfate sodium (DSS)-induced colitis and mucosal healing, IECs were the main producers of IL-20. Compared with wildtype controls, Il20-/-, Il20ra-/- and Il20rb-/- mice were more susceptible to experimental DSS-induced colitis. IL-20 deficiency was associated with increased IFN/STAT2 activity in mice and IFN/STAT2-induced necroptotic cell death in IEC-derived organoids could be markedly blocked by IL-20. Moreover, newly generated Stat2ΔIEC mice, lacking STAT2 in IECs, were less susceptible to experimental colitis compared with wildtype controls and the administration of IL-20 suppressed colitis activity in wildtype animals. CONCLUSION: IL-20 controls colitis and mucosal healing by interfering with the IFN/STAT2 death signalling pathway in IECs. These results indicate new directions for suppressing gut inflammation by modulating IL-20-controlled STAT2 signals.
Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Mucosa Intestinal/metabolismo , Colitis/metabolismo , Interleucinas/metabolismo , Inflamación/metabolismo , Células Epiteliales/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Sulfato de Dextran/farmacología , Ratones Endogámicos C57BL , Factor de Transcripción STAT2/metabolismoRESUMEN
While the number and types of indoor air pollutants is rising, much is suspected but little is known about the impact of their potentially synergistic interactions, upon human health. Gases, particulate matter, organic compounds but also allergens and viruses, fall within the 'pollutant' definition. Distinct populations, such as children and allergy and asthma sufferers are highly susceptible, while a low socioeconomic background is a further susceptibility factor; however, no specific guidance is available. We spend most of our time indoors; for children, the school environment is of paramount importance and potentially amenable to intervention. The interactions between some pollutant classes have been studied. However, a lot is missing with respect to understanding interactions between specific pollutants of different classes in terms of concentrations, timing and sequence, to improve targeting and upgrade standards. SynAir-G is a European Commission-funded project aiming to reveal and quantify synergistic interactions between different pollutants affecting health, from mechanisms to real life, focusing on the school setting. It will develop a comprehensive and responsive multipollutant monitoring system, advance environmentally friendly interventions, and disseminate the generated knowledge to relevant stakeholders in accessible and actionable formats. The aim of this article it to put forward the SynAir-G hypothesis, and describe its background and objectives.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Asma , Contaminantes Ambientales , Niño , Humanos , Contaminación del Aire Interior/efectos adversos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado , Asma/epidemiología , Asma/etiología , Monitoreo del AmbienteRESUMEN
IL-3 has been reported to be involved in various inflammatory disorders, but its role in inflammatory bowel disease (IBD) has not been addressed so far. Here, we determined IL-3 expression in samples from patients with IBD and studied the impact of Il3 or Il3r deficiency on T cell-dependent experimental colitis. We explored the mechanical, cytoskeletal and migratory properties of Il3r -/- and Il3r +/+ T cells using real-time deformability cytometry, atomic force microscopy, scanning electron microscopy, fluorescence recovery after photobleaching and in vitro and in vivo cell trafficking assays. We observed that, in patients with IBD, the levels of IL-3 in the inflamed mucosa were increased. In vivo, experimental chronic colitis on T cell transfer was exacerbated in the absence of Il-3 or Il-3r signalling. This was attributable to Il-3r signalling-induced changes in kinase phosphorylation and actin cytoskeleton structure, resulting in increased mechanical deformability and enhanced egress of Tregs from the inflamed colon mucosa. Similarly, IL-3 controlled mechanobiology in human Tregs and was associated with increased mucosal Treg abundance in patients with IBD. Collectively, our data reveal that IL-3 signaling exerts an important regulatory role at the interface of biophysical and migratory T cell features in intestinal inflammation and suggest that this might be an interesting target for future intervention.
Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Linfocitos T Reguladores , Receptores de Interleucina-3/metabolismo , Interleucina-3/metabolismo , Inflamación/metabolismo , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismoRESUMEN
BACKGROUND: From early life, respiratory viruses are implicated in the development, exacerbation and persistence of respiratory conditions such as asthma. Complex dynamics between microbial communities and host immune responses shape immune maturation and homeostasis, influencing health outcomes. We evaluated the hypothesis that the respiratory virome is linked to systemic immune responses, using peripheral blood and nasopharyngeal swab samples from preschool-age children in the PreDicta cohort. METHODS: Peripheral blood mononuclear cells from 51 children (32 asthmatics and 19 healthy controls) participating in the 2-year multinational PreDicta cohort were cultured with bacterial (Bacterial-DNA, LPS) or viral (R848, Poly:IC, RV) stimuli. Supernatants were analysed by Luminex for the presence of 22 relevant cytokines. Virome composition was obtained using untargeted high throughput sequencing of nasopharyngeal samples. The metagenomic data were used for the characterization of virome profiles and the presence of key viral families (Picornaviridae, Anelloviridae, Siphoviridae). These were correlated to cytokine secretion patterns, identified through hierarchical clustering and principal component analysis. RESULTS: High spontaneous cytokine release was associated with increased presence of Prokaryotic virome profiles and reduced presence of Eukaryotic and Anellovirus profiles. Antibacterial responses did not correlate with specific viral families or virome profile; however, low antiviral responders had more Prokaryotic and less Eukaryotic virome profiles. Anelloviruses and Anellovirus-dominated profiles were equally distributed among immune response clusters. The presence of Picornaviridae and Siphoviridae was associated with low interferon-λ responses. Asthma or allergy did not modify these correlations. CONCLUSION: Antiviral cytokine responses at a systemic level reflect the upper airway virome composition. Individuals with low innate interferon responses have higher abundance of Picornaviruses (mostly Rhinoviruses) and bacteriophages. Bacteriophages, particularly Siphoviridae, appear to be sensitive sensors of host antimicrobial capacity, while Anelloviruses are not correlated with TLR-induced immune responses.
Asunto(s)
Antivirales , Asma , Preescolar , Niño , Humanos , Viroma , Leucocitos Mononucleares , Interferones , InmunidadRESUMEN
BACKGROUND: Haemophilus influenzae (H. influenzae), Streptococcus pneumoniae (pneumococcus) and influenza vaccines are administered in children to prevent infections caused by these pathogens. The benefits of vaccination for asthma control in children and the elicited immune response are not fully understood. This study aimed to investigate the impact of these vaccinations on respiratory infections, asthma symptoms, asthma severity and control status, pathogen colonization and in vitro immune responses to different stimulants mimicking infections in asthmatic children. METHODS: Children aged 4-6 years were recruited into the multicentre prospective PreDicta study conducted across five European countries. Information about vaccination history, infections, antibiotic use, inhaled corticosteroid (ICS) use and asthma symptoms in the last 12 months were obtained from questionnaires of the study. Nasopharyngeal samples were collected at the first visit to assess bacterial and viral colonization, and venous blood for isolation of peripheral blood mononuclear cells (PBMCs). The PBMCs were stimulated with phytohemagglutinin, R848, Poly I:C and zymosan. The levels of 22 cytokines and chemokines were measured in cell culture supernatants using a luminometric multiplex assay. RESULTS: One-hundred and forty asthmatic preschool children (5.3 ± 0.7 years) and 53 healthy children (5.0 ± 0.8 years) from the PreDicta cohort were included in the current study. Asthmatic children were associated with more frequent upper and lower respiratory infections, and more frequent and longer duration of antibiotic use compared with healthy children. In asthmatic children, sufficient H. influenzae vaccination was associated with a shorter duration of upper respiratory infection (URI) and overall use and average dose of ICS. The airway colonization was characterized by less pneumococcus and more rhinovirus. Pneumococcal vaccination was associated with a reduction in the use rate and average dose of ICS, improved asthma control, and less human enterovirus and more H. influenzae and rhinovirus (RV) airway colonization. Influenza vaccination in the last 12 months was associated with a longer duration of URI, but with a decrease in the occurrence of lower respiratory infection (LRI) and the duration of gastrointestinal (GI) infection and antibiotic use. Asthmatic preschoolers vaccinated with H. influenzae, pneumococcus or influenza presented higher levels of Th1-, Th2-, Th17- and regulatory T cells (Treg)-related cytokines in unstimulated PBMCs. Under stimulation, PBMCs from asthmatic preschoolers with pneumococcal vaccination displayed a predominant anti-inflammatory immune response, whereas PBMCs from asthmatic children with sufficient H. influenzae or influenza vaccination were associated with both pro- and anti-inflammatory immune responses. CONCLUSION: In asthmatic preschoolers, the standard childhood vaccinations to common respiratory pathogens have beneficial effects on asthma control and may modulate immune responses relevant to asthma pathogenesis.
Asunto(s)
Asma , Gripe Humana , Infecciones del Sistema Respiratorio , Humanos , Preescolar , Lactante , Streptococcus pneumoniae , Haemophilus influenzae , Gripe Humana/prevención & control , Estudios Prospectivos , Leucocitos Mononucleares , Infecciones del Sistema Respiratorio/microbiología , Citocinas , Inmunidad , Vacunación , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , AntiinflamatoriosRESUMEN
BACKGROUND: The impact of physical activity on immune response is a hot topic in exercise immunology, but studies involving asthmatic children are scarce. Our aims were to examine whether there were any differences in the level of physical activity and daily TV attendance, to assess its role on asthma control and immune responses to various immune stimulants. METHODS: Weekly physical activity and daily television attendance were obtained from questionnaires at inclusion of the PreDicta study. PBMC cultures were stimulated with phytohemagglutinin (PHA), R848, poly I:C, and zymosan. A panel of cytokines was measured and quantified in cell culture supernatants using luminometric multiplex immunofluorescence beads-based assay. RESULTS: Asthmatic preschoolers showed significantly more TV attendance than their healthy peers (58.6% vs. 41.5% 1-3 h daily and only 25.7% vs. 47.2% ≤1 h daily) and poor asthma control was associated with less frequent physical activity (PA) (75% no or occasional activity in uncontrolled vs. 20% in controlled asthma; 25% ≥3 times weekly vs. 62%). Asthmatics with increased PA exhibited elevated cytokine levels in response to polyclonal stimulants, suggesting a readiness of circulating immune cells for type 1, 2, and 17 cytokine release compared to subjects with low PA and high TV attendance. This may also represent a proinflammatory state in high PA asthmatic children. Low physical activity and high TV attendance were associated with a decrease in proinflammatory cytokines. Proinflammatory cytokines were correlating with each other in in vitro immune responses of asthmatic children, but not healthy controls, this correlation was more pronounced in children with sedentary behavior. CONCLUSION: Asthmatic children show more sedentary behavior than healthy subjects, while poor asthma control is associated with a substantial decrease in physical activity. Our results suggest that asthmatic children may profit from regular exercise, as elevated cytokine levels in stimulated conditions indicate an immune system prepared for responding strongly in case of different types of infections. However, it has to be considered that a hyperinflammatory state in high PA may not be beneficial in asthmatic children.
Asunto(s)
Asma , Leucocitos Mononucleares , Niño , Citocinas/metabolismo , Ejercicio Físico , Humanos , Inmunidad , Leucocitos Mononucleares/metabolismoRESUMEN
INTRODUCTION: Interferon (IFN) responses have been reported to be defective in rhinovirus (RV)-induced asthma. The heterodimeric receptor of type I IFN (IFN-α/ß) is composed of IFN-αR1 and IFN-αR2. Ligand binding to the IFN-α/ß receptor complex activates signal transducer and activator of transcription (STAT) proteins STAT1 and STAT2 intracellularly. Although type III IFN (IFN-λ) binds to a different receptor containing IFN-λR1 and interleukin-10R2, its triggering leads to activation of the same downstream transcription factors. Here, we analysed the effects of RV on IFN type I and III receptors, and asked about possible Toll-like receptor 7/8 (TLR7/8) agonist R848-mediated IFN-αR1 and IFN-λR1 regulation. METHODS: We measured IFN-α, IFN-ß and IFN-λ and their receptor levels in peripheral blood mononuclear cell (PBMC) supernatants and cell pellets stimulated with RV1b and R848 in two cohorts of children with and without asthma recruited at pre-school age (PreDicta) and at primary school age (AGENDAS) as well as in cell supernatants from total lung cells isolated from mice. RESULTS: We observed that R848 induced IFN-λR mRNA expression in PBMCs of healthy and asthmatic children, but suppressed IFN-αR mRNA levels. In murine lung cells, RV1b alone and together with R848 suppressed IFN-αR protein in T-cells compared with controls and in total lung IFN-λR mRNA compared with RV1b infection alone. CONCLUSIONS: In PBMCs from pre-school age children, IFN-αR mRNA was reduced and IFN-λR1 mRNA was induced upon treatment with the TLR7/8 agonist R848, thus suggesting new avenues for induction of antiviral immune responses in paediatric asthma.
Asunto(s)
Asma , Rhinovirus , Animales , Niño , Humanos , Interferón Tipo I , Interferones , Leucocitos Mononucleares , Glicoproteínas de Membrana , Ratones , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Interferón lambdaRESUMEN
OBJECTIVES: Eosinophils possess pro-inflammatory functions in asthma. However, our recent studies have suggested that innate lymphoid cells type 2 (ILC2s) and eosinophils have proresolving properties in rheumatoid arthritis (RA). Nothing is known yet about the mechanisms determining the double-edged role of eosinophils. Therefore, we investigated whether asthma, a paradigm eosinophilic disease, can elicit resolution of chronic arthritis. METHODS: Ovalbumin-triggered eosinophilic asthma was combined with K/BxN serum-induced arthritis, where lung and synovial eosinophil subsets were compared by single-cell RNA sequencing (scRNA-seq). To investigate the involvement of the ILC2-interleukin-5 (IL-5) axis, hydrodynamic injection (HDI) of IL-25 and IL-33 plasmids, IL-5 reporter mice and anti-IL-5 antibody treatment were used. In patients with RA, the presence of distinct eosinophil subsets was examined in peripheral blood and synovial tissue. Disease activity of patients with RA with concomitant asthma was monitored before and after mepolizumab (anti-IL-5 antibody) therapy. RESULTS: The induction of eosinophilic asthma caused resolution of murine arthritis and joint tissue protection. ScRNA-seq revealed a specific subset of regulatory eosinophils (rEos) in the joints, distinct from inflammatory eosinophils in the lungs. Mechanistically, synovial rEos expanded on systemic upregulation of IL-5 released by lung ILC2s. Eosinophil depletion abolished the beneficial effect of asthma on arthritis. rEos were consistently present in the synovium of patients with RA in remission, but not in active stage. Remarkably, in patients with RA with concomitant asthma, mepolizumab treatment induced relapse of arthritis. CONCLUSION: These findings point to a hitherto undiscovered proresolving signature in an eosinophil subset that stimulates arthritis resolution.
Asunto(s)
Artritis Experimental , Artritis Reumatoide , Asma , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Asma/tratamiento farmacológico , Eosinófilos , Humanos , Inmunidad Innata , Interleucina-5/farmacología , Linfocitos , RatonesRESUMEN
BACKGROUND: Investigation of preschool asthma is important since not all children outgrow their illness during this age. Data are scarce on the role of rhinovirus (RV) infections in this patient group. OBJECTIVES: To investigate the role of RV infections in preschool asthma: (i) susceptibility factors, (ii) clinical course, and (iii) medium-term outcome. METHODS: A total of 130 asthmatic children aged 4-6 years from the multinational PreDicta cohort were prospectively followed for a 12-month period. Allergy tests and a standard health questionnaire were carried out at study entry. Respiratory virus presence in nasopharyngeal washes was studied at illness visits and at 3 scheduled visits. RESULTS: At study entry, mean age of the children was 5.3 years. Of 571 visits, 54% were positive for any virus and 39% for RV. Patient characteristics were only assessed with RV infection due to low number of other viruses. The use of supplementary vitamin D was inversely associated with RV infection (P < .05). RV infection was associated with more severe course of acute illness in terms of more severe nighttime coughing, more sleep disturbances, and more days with runny nose (all P < .05). RV infection was also associated with more severe disease course during the 12-month follow-up in terms of more nights with awakenings and more days of exercise-related symptoms (both P < .05). CONCLUSIONS: Vitamin D supplementation may have an anti-rhinovirus effect. Both short- and medium-term outcomes suggest RV infection to be an important clinical marker of instable preschool asthma.
Asunto(s)
Asma , Rhinovirus , Asma/epidemiología , Niño , Preescolar , Estudios de Cohortes , Progresión de la Enfermedad , HumanosRESUMEN
Acid sphingomyelinase (ASM) is one of the enzymes that catalyzes the breakdown of sphingomyelin to ceramide and phosphorylcholine. In this study, we aimed at elucidating the role of ASM in allergic asthma. We used an ovalbumin-induced murine model of asthma where we compared wild-type and ASM-deficient mice. In wild-type mice, secretory ASM activity in the bronchoalveolar lavage fluid was increased in the acute ovalbumin model, but not in a tolerogenic model. Furthermore, in the absence of ASM, the serum IgE level was reduced, compared with wild-type mice, while an accumulation of interstitial macrophages and foreign antigen-induced regulatory T cells along with exhausted CD4+ PD1+ T cells was observed in the lungs of ASM-/- mice. In conclusion, in the absence of ASM, we observed an accumulation of immunosuppressive antigen-induced regulatory T cells expressing Foxp3 and CTLA4 in the lung as well as multinucleated interstitial macrophages and exhausted CD4+ PD1+ T cells associated with inhibition of serum IgE in asthma.
Asunto(s)
Asma/enzimología , Asma/inmunología , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Asma/inducido químicamente , Modelos Animales de Enfermedad , Femenino , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina , Esfingomielina Fosfodiesterasa/deficiencia , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismoRESUMEN
BACKGROUND: The immunosuppressive role of the cytokine IL-35 in patients with non-small cell lung cancer (NSCLC) is poorly understood. In this study, we analysed the localisation and regulation of IL-35 in the lung of patients with non-small cell lung cancer (NSCLC) to further elucidate the immune-escape of cancer cells in perioperative course of disease. METHODS: Interleukin 35 (IL-35) was measured by ELISA in postoperative serum from 7 patients with NSCLC as well as 8 samples from healthy controls. Immunohistochemistry, FACS analysis, real-time PCR, as well as western blot from samples of the control (CTR), peri-tumoural (PT) and the tumoural (TU) region of the lung derived from patients with NSCLC and 10 controls were performed. RESULTS: Here we found elevated levels of IL-35 in the TU region as well as postoperative serum from patients with lung adenocarcinoma. Consistently, we found an increased expression of IL-35+Foxp-3+ cells, which associated with ARG1 mRNA expression and decreased TNFA in the TU region of the lung of patients with NSCLC as compared to their CTR region. Furthermore, in the CTR region of the lung of patients with NSCLC, CD68+ macrophages were induced and correlated with IL-35+ cells. Finally, IL-35 positively correlated with TTF-1+PD-L1+ cells in the TU region of NSCLC patients. CONCLUSIONS: Induced IL-35+Foxp3+ cell numbers in the TU region of the lung of patients with NSCLC associated with ARG1 mRNA expression and with TTF-1+PD-L1+ cells. In the tumour-free CTR area, IL-35 correlated with CD68+ macrophages. Thus inhibitors to IL-35 would probably succeed in combination with antibodies against immune checkpoints like PD-L1 and PD-1 currently used against NSCLC because they would inhibit immunosuppressive macrophages and T regulatory cells while promoting T cell-mediated anti-tumoural immune responses in the microenvironment as well as the TU region of NSCLC patients.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Interleucinas/inmunología , Neoplasias Pulmonares/inmunología , Células A549 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Estudios de Casos y Controles , Citometría de Flujo , Factores de Transcripción Forkhead/biosíntesis , Factores de Transcripción Forkhead/inmunología , Humanos , Inmunohistoquímica , Subunidad p35 de la Interleucina-12/biosíntesis , Subunidad p35 de la Interleucina-12/genética , Subunidad p35 de la Interleucina-12/inmunología , Interleucinas/biosíntesis , Interleucinas/genética , Pulmón/inmunología , Pulmón/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Antígenos de Histocompatibilidad Menor/biosíntesis , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/inmunología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Escape del TumorRESUMEN
Rationale: Rhinoviruses (RVs) are major triggers of common cold and acute asthma exacerbations. RV species A, B, and C may have distinct clinical impact; however, little is known regarding RV species-specific antibody responses in health and asthma.Objectives: To describe and compare total and RV species-specific antibody levels in healthy children and children with asthma, away from an acute event.Methods: Serum samples from 163 preschool children with mild to moderate asthma and 72 healthy control subjects from the multinational Predicta cohort were analyzed using the recently developed PreDicta RV antibody chip.Measurements and Main Results: RV antibody levels varied, with RV-C and RV-A being higher than RV-B in both groups. Compared with control subjects, asthma was characterized by significantly higher levels of antibodies to RV-A and RV-C, but not RV-B. RV antibody levels positively correlated with the number of common colds over the previous year in healthy children, and wheeze episodes in children with asthma. Antibody levels also positively correlated with asthma severity but not with current asthma control.Conclusions: The variable humoral response to RV species in both groups suggests a differential infectivity pattern between RV species. In healthy preschoolers, RV antibodies accumulate with colds. In asthma, RV-A and RV-C antibodies are much higher and further increase with disease severity and wheeze episodes. Higher antibody levels in asthma may be caused by a compromised innate immune response, leading to increased exposure of the adaptive immune response to the virus. Importantly, there is no apparent protection with increasing levels of antibodies.
Asunto(s)
Anticuerpos Antivirales/sangre , Asma/sangre , Rhinovirus/inmunología , Niño , Preescolar , Humanos , Estudios Prospectivos , Rhinovirus/clasificación , Índice de Severidad de la Enfermedad , Especificidad de la EspecieRESUMEN
Current understanding of adaptive immune, particularly T cell, responses to human rhinoviruses (RV) is limited. Memory T cells are thought to be of a primarily T helper 1 type, but both T helper 1 and T helper 2 memory cells have been described, and heightened T helper 2/ lessened T helper 1 responses have been associated with increased RV-induced asthma exacerbation severity. We examined the contribution of T helper 1 cells to RV-induced airways inflammation using mice deficient in the transcription factor T-Box Expressed In T Cells (Tbet), a critical controller of T helper 1 cell differentiation. Using flow cytometry we showed that Tbet deficient mice lacked the T helper 1 response of wild type mice and instead developed mixed T helper 2/T helper 17 responses to RV infection, evidenced by increased numbers of GATA binding protein 3 (GATA-3) and RAR-related orphan receptor gamma t (RORγt), and interleukin-13 and interleukin-17A expressing CD4+ T cells in the lung. Forkhead box P3 (FOXP3) and interleukin-10 expressing T cell numbers were unaffected. Tbet deficient mice also displayed deficiencies in lung Natural Killer, Natural Killer T cell and γδT cell responses, and serum neutralising antibody responses. Tbet deficient mice exhibited pronounced airways eosinophilia and mucus production in response to RV infection that, by utilising a CD4+ cell depleting antibody, were found to be T helper cell dependent. RV induction of T helper 2 and T helper 17 responses may therefore have an important role in directly driving features of allergic airways disease such as eosinophilia and mucus hypersecretion during asthma exacerbations.
RESUMEN
Recent studies have provided important insights into the pathogenesis of inflammatory bowel disease (IBD). The development of new therapeutic agents has been triggered by basic research and studies in mouse models of IBD. It is expected that improved translational research will lead to optimized therapy and new individualized treatment options.
Asunto(s)
Antiinflamatorios/uso terapéutico , Descubrimiento de Drogas , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Animales , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Humanos , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/inmunología , Interleucinas/inmunología , Sistema Mononuclear Fagocítico/inmunologíaRESUMEN
BACKGROUND: The PreDicta cohort was designed to prospectively evaluate wheeze/asthma persistence in preschoolers in association with viral/microbial exposures and immunological responses. We present the cohort design and demographic/disease characteristics and evaluate unsupervised and predefined phenotypic subgroups at inclusion. METHODS: PreDicta is a 2-year prospective study conducted in five European regions, including children 4-6 years with a diagnosis of asthma as cases and healthy age-matched controls. At baseline, detailed information on demographics, asthma and allergy-related disease activity, exposures, and lifestyle were recorded. Lung function, airway inflammation, and immune responses were also assessed. Power analysis confirmed that the cohort is adequate to answer the initial hypothesis. RESULTS: A total of 167 asthmatic children (102 males) and 66 healthy controls (30 males) were included. Groups were homogeneous in respect to most baseline characteristics, with the exception of male gender in cases (61%) and exposure to tobacco smoke. Comorbidities and number and duration of infections were significantly higher in asthmatics than controls. 55.7% of asthmatic children had at least one positive skin prick test to aeroallergens (controls: 33.3%, P = .002). Spirometric and exhaled nitric oxide values were within normal limits; only baseline FEV0.5 and FEV1 reversibility values were significantly different between groups. Viral infections were the most common triggers (89.2%) independent of severity, control, or atopy; however, overlapping phenotypes were also common. Severity and control clustered together in an unsupervised analysis, separating moderate from mild disease. CONCLUSIONS: The PreDicta cohort presented no differences in non-asthma related measures; however, it is well balanced regarding key phenotypic characteristics representative of "preschool asthma".
Asunto(s)
Asma/microbiología , Infecciones/complicaciones , Virosis/complicaciones , Asma/inmunología , Estudios de Casos y Controles , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Infecciones/inmunología , Modelos Lineales , Masculino , Estudios Prospectivos , Recurrencia , Proyectos de Investigación , Ruidos Respiratorios/inmunología , Factores de Riesgo , Virosis/inmunologíaRESUMEN
BACKGROUND: Lung cancer is the most life-threatening cancer type worldwide. Treatment options include surgery, radio- and chemotherapy, as well as the use of immunomodulatory antibodies. Interleukin (IL)-10 is an immunosuppressive cytokine involved in tumour immune escape. METHODS: Immunohistochemistry (IHC) on human lung surgery tissue as well as human tumour cell line cultures, FACS analysis, real-time PCR and experimental lung cancer. RESULTS: Here we discovered a positive correlation between IL-10 and IL-10 receptor (IL-10R) expression in the lung with tumour diameter in patients with lung cancer (non-small cell lung cancer), the most life-threatening cancer type worldwide. IL-10 and IL-10R were found induced in cells surrounding the lung tumour cells, and IL-10R was mainly expressed on the surface of Foxp-3+ T-regulatory lymphocytes infiltrating the tumour of these patients where its expression inversely correlated with programmed cell death 1. These findings were confirmed in translational studies. In a human lung adenocarcinoma cell line, IL-10R was found induced under metabolic restrictions present during tumour growth, whereby IL-10 inhibited PDL1 and tumour cell apoptosis. CONCLUSIONS: These new findings suggest that IL-10 counteracts IFN-γ effects on PD1/PDL1 pathway, resulting in possible resistance of the tumour to anti-PD1/PDL1 immunotherapy.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Interleucina-10/fisiología , Neoplasias Pulmonares/inmunología , Adenocarcinoma/inmunología , Adenocarcinoma del Pulmón , Animales , Antígeno B7-H1/análisis , Antígeno B7-H1/fisiología , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Receptor de Muerte Celular Programada 1/análisis , Receptor de Muerte Celular Programada 1/fisiología , Receptores de Interleucina-10/análisis , Escape del TumorRESUMEN
We analysed the influence of rhinovirus (RV) in nasopharyngeal fluid (NPF) on type I and III interferon (IFN) responses (e.g. IFN-α and IFN -: λ) and their signal transduction, at baseline and during disease exacerbation, in cohorts of pre-school children with and without asthma.At the time of recruitment into the Europe-wide study PreDicta, and during symptoms, NPF was collected and the local RV colonisation was analysed. Peripheral blood mononuclear cells (PBMCs) were challenged in vitro with RV or not. RNA was analysed by quantitative real-time PCR and gene arrays. Serum was analysed with ELISA for IFNs and C-reactive protein.We found that PBMCs from asthmatic children infected in vitro with the RV1b serotype upregulated MYD88, IRF1, STAT1 and STAT2 mRNA, whereas MYD88, IRF1, STAT1 and IRF9 were predominantly induced in control children. Moreover, during symptomatic visits because of disease exacerbation associated with RV detection in NPF, IFN-α production was found increased, while IFN-λ secretion was already induced by RV in asthmatic children at baseline.During asthma exacerbations associated with RV, asthmatic children can induce IFN-α secretion, indicating a hyperactive immune response to repeated respiratory virus infection.
Asunto(s)
Asma/inmunología , Proteína C-Reactiva/análisis , Interferones/sangre , Leucocitos Mononucleares/virología , Infecciones por Picornaviridae/inmunología , Asma/virología , Células Cultivadas , Preescolar , Progresión de la Enfermedad , Europa (Continente) , Femenino , Humanos , Factor 1 Regulador del Interferón/genética , Interferones/inmunología , Masculino , Factor 88 de Diferenciación Mieloide/genética , Nasofaringe/virología , Estudios Prospectivos , ARN Mensajero/análisis , Rhinovirus , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT2/genética , Transducción de SeñalRESUMEN
Human studies demonstrated that allergen-specific immunotherapy (IT) represents an effective treatment for allergic diseases. IT involves repeated administration of the sensitizing allergen, indicating a crucial contribution of T cells to its medicinal benefit. However, the underlying mechanisms of IT, especially in a chronic disease, are far from being definitive. In the current study, we sought to elucidate the suppressive mechanisms of IT in a mouse model of chronic allergic asthma. OVA-sensitized mice were challenged with OVA or PBS for 4 wk. After development of chronic airway inflammation, mice received OVA-specific IT or placebo alternately to airway challenge for 3 wk. To analyze the T cell-mediated mechanisms underlying IT in vivo, we elaborated the role of T-bet-expressing Th1 cells, T cell-derived IL-10, and Ag-specific thymic as well as peripherally induced Foxp3(+) regulatory T (Treg) cells. IT ameliorated airway hyperresponsiveness and airway inflammation in a chronic asthma model. Of note, IT even resulted in a regression of structural changes in the airways following chronic inhaled allergen exposure. Concomitantly, IT induced Th1 cells, Foxp3(+), and IL-10-producing Treg cells. Detailed analyses revealed that thymic Treg cells crucially contribute to the effectiveness of IT by promoting IL-10 production in Foxp3-negative T cells. Together with the peripherally induced Ag-specific Foxp3(+) Treg cells, thymic Foxp3(+) Treg cells orchestrate the curative mechanisms of IT. Taken together, we demonstrate that IT is effective in a chronic allergic disease and dependent on IL-10 and thymic as well as peripherally induced Ag-specific Treg cells.