Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Acc Chem Res ; 57(10): 1478-1487, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38687873

RESUMEN

ConspectusMagnetism is an area of immense fundamental and technological importance. At the atomic level, magnetism originates from electron "spin". The field of nanospintronics (or nanoscale spin-based electronics) aims to control spins in nanoscale systems, which has resulted in astronomical improvement in data storage and magnetic field sensing technologies over the past few decades, recognized by the 2007 Nobel Prize in Physics. Spins in nanoscale solid-state devices can also act as quantum bits or qubits for emerging quantum technologies, such as quantum computing and quantum sensing.Due to the fundamental connection between magnetism and spins, ferromagnets play a key role in many solid-state spintronic devices. This is because at the Fermi level, electron density of states is spin-polarized, which permits ferromagnets to act as electrical injectors and detectors of spins. Ferromagnets, however, have limitations in terms of low spin polarization at the Fermi level, stray magnetic fields, crosstalk, and thermal instability at the nanoscale. Therefore, new physics and new materials are needed to propel spintronic and quantum device technologies to the true atomic limit. Emerging new phenomena such as chirality induced spin selectivity or CISS, in which an intriguing correlation between carrier spin and medium chirality is observed, could therefore be instrumental in nanospintronics. This effect could allow molecular-scale, chirality controlled spin injection and detection without the need for any ferromagnet, thus opening a fundamentally new direction for device spintronics.While CISS finds a myriad of applications in diverse areas such as chiral separation, recognition, detection, and asymmetric catalysis, in this focused Account, we exclusively review spintronic device results of this effect due to its immense potential for future spintronics. The first generation of CISS-based spintronic devices have primarily used chiral bioorganic molecules; however, many practical limitations of these materials have also been identified. Therefore, our discussion revolves around the family of chiral composite materials, which may emerge as an ideal platform for CISS due to their ability to assimilate various desirable material properties on a single platform. This class of materials has been extensively studied by the organic chemistry community in the past decades, and we discuss the various chirality transfer mechanisms that have been identified, which play a central role in CISS. Next, we discuss CISS device studies performed on some of these chiral composite materials. Emphasis is given to the family of chiral organic-carbon allotrope composites, which have been extensively studied by the authors of this Account over the past several years. Interestingly, due to the presence of multiple materials, CISS signals from hybrid chiral systems sometimes differ from those observed in purely chiral systems. Given the sheer diversity of chiral composite materials, CISS device studies so far have been limited to only a few varieties, and this Account is expected to draw increased attention to the family of chiral composites and motivate further studies of their CISS applications.

2.
J Chem Phys ; 159(3)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37466230

RESUMEN

Spin-orbit coupling in a chiral medium is generally assumed to be a necessary ingredient for the observation of the chirality-induced spin selectivity (CISS) effect. However, some recent studies have suggested that CISS may manifest even when the chiral medium has zero spin-orbit coupling. In such systems, CISS may arise due to an orbital polarization effect, which generates an electromagnetochiral anisotropy in two-terminal conductance. Here, we examine these concepts using a chirally functionalized carbon nanotube network as the chiral medium. A transverse measurement geometry is used, which nullifies any electromagnetochiral contribution but still exhibits the tell-tale signs of the CISS effect. This suggests that CISS may not be explained solely by electromagnetochiral effects. The role of nanotube spin-orbit coupling on the observed pure CISS signal is studied by systematically varying nanotube diameter. We find that the magnitude of the CISS signal scales proportionately with the spin-orbit coupling strength of the nanotubes. We also find that nanotube diameter dictates the supramolecular chirality of the medium, which in turn determines the sign of the CISS signal.

3.
Nanotechnology ; 32(45)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34325416

RESUMEN

Helical functionalization of carbon nanotubes using DNA strands can polarize carrier spins through chirality induced spin selectivity (or CISS) effect. Detection of this effect using transport experiments unravels an underlying magnetoresistance effect, origin of which is not well understood. In the present study, we investigate this effect, a fundamental understanding of which is crucial for the potential use of this system in spintronic devices. The conduction mechanism has been found to be in the strongly localized regime due to DNA functionalization, with the observed magnetoresistance originating from the interference effects between the forward and backward hopping paths. CISS-induced spin polarization has been estimated to increase the carrier localization length by an order of magnitude in the low temperature range and it affects the magnetoresistance effect in a non-trivial way that is not observed in conventional systems.


Asunto(s)
ADN/química , Nanotubos de Carbono/química , Portadores de Fármacos/química , Fenómenos Magnéticos , Tamaño de la Partícula
4.
ACS Nano ; 17(20): 20424-20433, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37668559

RESUMEN

Chiral graphene hybrid materials have attracted significant attention in recent years due to their various applications in the areas of chiral catalysis, chiral separation and recognition, enantioselective sensing, etc. On the other hand, chiral materials are also known to exhibit chirality-dependent spin transmission, commonly dubbed "chirality induced spin selectivity" or CISS. However, CISS properties of chiral graphene materials are largely unexplored. As such, it is not clear whether graphene is even a promising material for the CISS effect given its weak spin-orbit interaction. Here, we report the CISS effect in chiral graphene sheets, in which a graphene derivative (reduced graphene oxide or rGO) is noncovalently functionalized with chiral Fmoc-FF (Fmoc-diphenylalanine) supramolecular fibers. The graphene flakes acquire a "conformational chirality" postfunctionalization, which, combined with other factors, is presumably responsible for the CISS signal. The CISS signal correlates with the supramolecular chirality of the medium, which depends on the thickness of graphene used. Quite interestingly, the noncovalent supramolecular chiral functionalization of conductive materials offers a simple and straightforward methodology to induce chirality and CISS properties in a multitude of easily accessible advanced conductive materials.

5.
J Phys Condens Matter ; 34(49)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36240752

RESUMEN

Current-perpendicular-to-plane magnetoresistance (CPP MR) in layered heterojunctions is at the heart of modern magnetic field sensing and data storage technologies. van der waals heterostructures and two-dimensional (2D) magnets opened a new playground for exploring this effect, although most 2D magnets exhibit large CPP MR only at very low temperatures due to their very low Curie temperatures. vanadium diselenide (VSe2) is a promising material since its monolayers can potentially act as room temperature ferromagnets. VSe2multilayers have been predicted to exhibit CPP MR effects, although experimental work in this area remains scarce. In this work we investigate CPP MR in 1T-VSe2ultrathin flakes, revealing alarge (∼60%-70%), positive, linear, and non saturating CPP MR, which persists close to room temperature (∼250 K), in a relatively small magnetic field range of ±12 kG. The CPP MR has been found to increase with decreasing flake thickness. The CPP MR originates due to the intrinsic inhomogeneity in the CPP transport path, andexhibits unprecedented immunity against thermal fluctuations, leading to increasingly enhanced MR as temperature is increased, even significantly beyond the charge density wave transition temperature. The observed 'thermally-driven' MR features are remarkably robust and reproducible, and can offer a viable route for developing practical room temperature 2D based magnetic sensor technologies. Our results also suggest that harnessing similar effects in other 2D systems could result in large MR as well, thereby motivating further research on CPP transport in these systems, which has been relatively unexplored so far.

6.
ACS Nano ; 16(10): 16941-16953, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36219724

RESUMEN

Supramolecular short-peptide assemblies have been widely used for the development of biomaterials with potential biomedical applications. These peptides can self-assemble in a multitude of chiral hierarchical structures triggered by the application of different stimuli, such as changes in temperature, pH, solvent, etc. The self-assembly process is sensitive to the chemical composition of the peptides, being affected by specific amino acid sequence, type, and chirality. The resulting supramolecular chirality of these materials has been explored to modulate protein and cell interactions. Recently, significant attention has been focused on the development of chiral materials with potential spintronic applications, as it has been shown that transport of charge carriers through a chiral environment polarizes the carrier spins. This effect, named chirality-induced spin selectivity or CISS, has been studied in different chiral organic molecules and materials, as well as carbon nanotubes functionalized with chiral molecules. Nevertheless, this effect has been primarily explored in homochiral systems in which the chirality of the medium, and hence the resulting spin polarization, is defined by the chirality of the molecule, with limited options for tunability. Herein, we have developed heterochiral carbon-nanotube-short-peptide materials made by the combination of two different chiral sources: that is, homochiral peptides (l/d) + glucono-δ-lactone. We show that the presence of a small amount of glucono-δ-lactone with fixed chirality can alter the supramolecular chirality of the medium, thereby modulating the sign of the spin signal from "up" to "down" and vice versa. In addition, small amounts of glucono-δ-lactone can even induce nonzero spin polarization in an otherwise achiral and spin-inactive peptide-nanotube composite. Such "chiral doping" strategies could allow the development of complementary CISS-based spintronic devices and circuits on a single material platform.


Asunto(s)
Nanotubos de Carbono , Nanotubos de Péptidos , Péptidos , Solventes/química , Materiales Biocompatibles
7.
ACS Nano ; 15(12): 20056-20066, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34870421

RESUMEN

Molecular functionalization of CNTs is a routine procedure in the field of nanotechnology. However, whether and how these molecules affect the spin polarization of the charge carriers in CNTs are largely unknown. In this work we demonstrate that spin polarization can indeed be induced in two-dimensional (2D) CNT networks by "certain" molecules and the spin signal routinely survives length scales significantly exceeding 1 µm. This result effectively connects the area of molecular spintronics with that of carbon-based 2D nanoelectronics. By using the versatility of peptide chemistry, we further demonstrate how spin polarization depends on molecular structural features such as chirality as well as molecule-nanotube interactions. A chirality-independent effect was detected in addition to the more common chirality-dependent effect, and the overall spin signal was found to be a combination of both. Finally, the magnetic field dependence of the spin signals has been explored, and the "chirality-dependent" signal has been found to exist only in certain field angles.

8.
ACS Nano ; 14(3): 3389-3396, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32096973

RESUMEN

Carbon nanotubes (CNTs), helically wrapped with single-stranded DNA, have recently emerged as a spin-filtering material. The inversion asymmetric helical potential of DNA creates a spin-filtering effect (commonly known as "chirality-induced spin selectivity" or CISS), which polarizes carrier spins in the nanotube. Thus, tuning of the DNA-CNT interaction is expected to affect carrier spins in nanotubes. The CISS effect induces spin polarization, which is coupled with the carrier's momentum direction, and therefore, in one-dimensional systems, such as nanotubes, momentum flip must be accompanied by a simultaneous spin flip. This spin momentum locking can have a profound impact on charge transport in nanotubes as backscattering due to phonons and disorder will be suppressed as these mechanisms are spin-independent. Here, we report DNA-CNT spin filters in which CNTs have been functionalized with two different classes of sequences, exhibiting different degrees of interaction with the CNT. They induce different degrees of spin polarization in the channel, with significant impact on temperature-dependent charge transport and interference phenomena arising from carrier backscattering. This work raises the intriguing possibility of engineering charge transport in nanotubes via CISS-induced spin polarization by tailor-made DNA sequences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA