RESUMEN
This study establishes a foundation for the ionic liquid (IL) pretreatment of duckweed biomass. An optimized IL-based process was designed to exploit the unique properties of duckweed including efficient metal removal, potential starch accumulation, and protein accumulation. Two ILs, namely, dimethylethanolammonium formate ([DMEtA][HCOO]) and N,N-dimethylbutylammonium hydrogen sulfate ([DMBA][HSO4]), were investigated for the pretreatment of two duckweed species (Spirodela polyrhiza and Lemna minor). The evaluation focused on starch recovery, sugar release, protein recovery, and metal extraction capabilities. [DMEtA][HCOO] demonstrated near-quantitative starch recoveries at 120 °C, while [DMBA][HSO4] showed similar performance at 90 °C within a reaction time of 2 h. Saccharification yields for most pulps exceeded 90% after 8 h of hydrolysis, outperforming "traditional" lignocellulosic biomasses such as miscanthus or sugarcane bagasse. Approximately 50 and 80 wt % of the protein were solubilized in [DMEtA][HCOO] and [DMBA][HSO4], respectively, while the remaining protein distributed between the pulp and lignin. However, the solubilized protein in the IL could not be recovered due to its low molecular weight. Regarding metal extraction, [DMEtA][HCOO] demonstrated higher efficiency, achieving 81% removal of Ni from Lemna minor's pulps, whereas [DMBA][HSO4] extracted only 28% of Ni with slightly higher pulp concentrations. These findings indicate the need for further optimization in concurrent metal extraction using ILs.
RESUMEN
In this paper, we investigated the effect of cation structure and water content on proton dissociation in alkylammonium [HSO4]- protic ionic liquids (ILs) doped with 20 wt % water and correlated this with experimental Hammett acidities. For pure systems, increased cation substitution resulted in a reduction in the number of direct anion-anion neighbors leading to larger numbers of small aggregates, which is further enhanced with addition of water. We also observed spontaneous proton dissociation from [HSO4]- to water only for primary amine-based protic ILs, preceded by the formation of an anion trimer motif. Investigation using DFT calculations revealed spontaneous proton dissociation from [HSO4]- to water can occur for each of the protic ILs investigated; however, this is dependent on the size of the anion aggregates. These findings are important in the fields of catalysis and lignocellulosic biomass, where solvent acidity is a crucial parameter in biomass fractionation and lignin chemistry.