RESUMEN
Neuroscience is advancing standardization and tool development to support rigor and transparency. Consequently, data pipeline complexity has increased, hindering FAIR (findable, accessible, interoperable and reusable) access. brainlife.io was developed to democratize neuroimaging research. The platform provides data standardization, management, visualization and processing and automatically tracks the provenance history of thousands of data objects. Here, brainlife.io is described and evaluated for validity, reliability, reproducibility, replicability and scientific utility using four data modalities and 3,200 participants.
Asunto(s)
Nube Computacional , Neurociencias , Neurociencias/métodos , Humanos , Neuroimagen/métodos , Reproducibilidad de los Resultados , Programas Informáticos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagenRESUMEN
BACKGROUND & AIMS: Better biomarkers for prediction of ulcerative colitis (UC) development and prognostication are needed. Anti-integrin αvß6 (anti-αvß6) autoantibodies have been described in patients with UC. We tested for the presence of anti-αvß6 antibodies in the preclinical phase of UC and studied their association with disease-related outcomes after diagnosis. METHODS: Anti-αvß6 autoantibodies were measured in 4 longitudinal serum samples collected from 82 subjects who later developed UC and 82 matched controls from a Department of Defense preclinical cohort (PREDICTS [Proteomic Evaluation and Discovery in an IBD Cohort of Tri-service Subjects]). In a distinct, external validation cohort (Crohn's and Colitis Canada Genetic Environmental Microbial project cohort), we tested 12 pre-UC subjects and 49 matched controls. Furthermore, anti-αvß6 autoantibodies were measured in 2 incident UC cohorts (COMPASS [Comprehensive Care for the Recently Diagnosed IBD Patients], n = 55 and OSCCAR [Ocean State Crohn's and Colitis Area Registry], n = 104) and associations between anti-αvß6 autoantibodies and UC-related outcomes were defined using Cox proportional hazards model. RESULTS: Anti-αvß6 autoantibodies were significantly higher among individuals who developed UC compared with controls up to 10 years before diagnosis in PREDICTS. The anti-αvß6 autoantibody seropositivity was 12.2% 10 years before diagnosis and increased to 52.4% at the time of diagnosis in subjects who developed UC compared with 2.7% in controls across the 4 time points. Anti-αvß6 autoantibodies predicted UC development with an area under the curve of at least 0.8 up to 10 years before diagnosis. The presence of anti-αvß6 autoantibodies in preclinical UC samples was validated in the GEM cohort. Finally, high anti-αvß6 autoantibodies was associated with a composite of adverse UC outcomes, including hospitalization, disease extension, colectomy, systemic steroid use, and/or escalation to biologic therapy in recently diagnosed UC. CONCLUSIONS: Anti-integrin αvß6 autoantibodies precede the clinical diagnosis of UC by up to 10 years and are associated with adverse UC-related outcomes.
Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedad de Crohn , Humanos , Colitis Ulcerosa/tratamiento farmacológico , Autoanticuerpos , Proteómica , Enfermedad de Crohn/tratamiento farmacológico , Biomarcadores , Colitis/complicacionesAsunto(s)
Conducta Cooperativa , Ciencia de los Datos , Comunicación Interdisciplinaria , Relaciones Interprofesionales , Biología Computacional , Ciencia de los Datos/ética , Ciencia de los Datos/organización & administración , Ciencia de los Datos/tendencias , Humanos , Colaboración IntersectorialRESUMEN
This paper uses accounting concepts-particularly the concept of Return on Investment (ROI)-to reveal the quantitative value of scientific research pertaining to a major US cyberinfrastructure project (XSEDE-the eXtreme Science and Engineering Discovery Environment). XSEDE provides operational and support services for advanced information technology systems, cloud systems, and supercomputers supporting non-classified US research, with an average budget for XSEDE of US$20M+ per year over the period studied (2014-2021). To assess the financial effectiveness of these services, we calculated a proxy for ROI, and converted quantitative measures of XSEDE service delivery into financial values using costs for service from the US marketplace. We calculated two estimates of ROI: a Conservative Estimate, functioning as a lower bound and using publicly available data for a lower valuation of XSEDE services; and a Best Available Estimate, functioning as a more accurate estimate, but using some unpublished valuation data. Using the largest dataset assembled for analysis of ROI for a cyberinfrastructure project, we found a Conservative Estimate of ROI of 1.87, and a Best Available Estimate of ROI of 3.24. Through accounting methods, we show that XSEDE services offer excellent value to the US government, that the services offered uniquely by XSEDE (that is, not otherwise available for purchase) were the most valuable to the facilitation of US research activities, and that accounting-based concepts hold great value for understanding the mechanisms of scientific research generally.
RESUMEN
Neuroscience research has expanded dramatically over the past 30 years by advancing standardization and tool development to support rigor and transparency. Consequently, the complexity of the data pipeline has also increased, hindering access to FAIR data analysis to portions of the worldwide research community. brainlife.io was developed to reduce these burdens and democratize modern neuroscience research across institutions and career levels. Using community software and hardware infrastructure, the platform provides open-source data standardization, management, visualization, and processing and simplifies the data pipeline. brainlife.io automatically tracks the provenance history of thousands of data objects, supporting simplicity, efficiency, and transparency in neuroscience research. Here brainlife.io's technology and data services are described and evaluated for validity, reliability, reproducibility, replicability, and scientific utility. Using data from 4 modalities and 3,200 participants, we demonstrate that brainlife.io's services produce outputs that adhere to best practices in modern neuroscience research.
RESUMEN
B cells, which are critical for intestinal homeostasis, remain understudied in ulcerative colitis (UC). In this study, we recruited three cohorts of patients with UC (primary cohort, n = 145; validation cohort 1, n = 664; and validation cohort 2, n = 143) to comprehensively define the landscape of B cells during UC-associated intestinal inflammation. Using single-cell RNA sequencing, single-cell IgH gene sequencing and protein-level validation, we mapped the compositional, transcriptional and clonotypic landscape of mucosal and circulating B cells. We found major perturbations within the mucosal B cell compartment, including an expansion of naive B cells and IgG+ plasma cells with curtailed diversity and maturation. Furthermore, we isolated an auto-reactive plasma cell clone targeting integrin αvß6 from inflamed UC intestines. We also identified a subset of intestinal CXCL13-expressing TFH-like T peripheral helper cells that were associated with the pathogenic B cell response. Finally, across all three cohorts, we confirmed that changes in intestinal humoral immunity are reflected in circulation by the expansion of gut-homing plasmablasts that correlates with disease activity and predicts disease complications. Our data demonstrate a highly dysregulated B cell response in UC and highlight a potential role of B cells in disease pathogenesis.
Asunto(s)
Colitis Ulcerosa , Células Plasmáticas , Linfocitos B , Colitis Ulcerosa/genética , Humanos , Mucosa Intestinal/patología , Recuento de Linfocitos , Linfocitos T Colaboradores-InductoresRESUMEN
Recent advancements in single cell sequencing technologies allow for identification of numerous immune-receptors expressed by T cells such as tumor-specific and autoimmune T cells. Determining antigen specificity of those cells holds immense therapeutic promise. Therefore, the purpose of this study was to develop a method that can efficiently test antigen reactivity of multiple T cell receptors (TCRs) with limited cost, time, and labor. Nuclear factor of activated T cells (NFAT) is a transcription factor involved in producing cytokines and is often utilized as a reporter system for T cell activation. Using a NFAT-based fluorescent reporter system, we generated T-hybridoma cell lines that express intensely fluorescent proteins in response to antigen stimulation and constitutively express additional fluorescent proteins, which serve as identifiers of each T-hybridoma expressing a unique TCR. This allows for the combination of multiple T-hybridoma lines within a single reaction. Sensitivity to stimulation is not decreased by adding fluorescent proteins or multiplexing T cells. In multiplexed reactions, response by one cell line does not induce response in others, thus preserving specificity. This multiplex assay system will be a useful tool for antigen discovery research in a variety of contexts, including using combinatorial peptide libraries to determine T cell epitopes.