Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Synchrotron Radiat ; 29(Pt 2): 393-399, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254302

RESUMEN

Algorithms and procedures to fully automate retuning of synchrotron radiation beamlines over wide energy ranges are discussed. The discussion is based on the implementation at the National Institute of General Medical Sciences and the National Cancer Institute Structural Biology Facility at the Advanced Photon Source. When a user selects a new beamline energy, software synchronously controls the beamline monochromator and undulator to maintain the X-ray beam flux after the monochromator, preserves beam attenuation by determining a new set of attenuator foils, changes, as needed, mirror reflecting stripes and the undulator harmonic, preserves beam focal distance of compound refractive lens focusing by changing the In/Out combination of lenses in the transfocator, and, finally, restores beam position at the sample by on-the-fly scanning of either the Kirkpatrick-Baez mirror angles or the transfocator up/down and inboard/outboard positions. The sample is protected from radiation damage by automatically moving it out of the beam during the energy change and optimization.


Asunto(s)
Lentes , Sincrotrones , Fotones , Programas Informáticos , Rayos X
2.
Proc Natl Acad Sci U S A ; 112(3): 696-701, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25552555

RESUMEN

Electron-hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field-induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the region extending ∼ 3 µm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray-induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. These results provide direct experimental observables capable of validating simulations of X-ray-induced damage within soft materials. In addition, X-ray-induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice.


Asunto(s)
Electricidad , Sincrotrones , Cinética , Modelos Teóricos , Método de Montecarlo
3.
J Synchrotron Radiat ; 24(Pt 1): 188-195, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28009558

RESUMEN

A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.


Asunto(s)
Cristalografía por Rayos X , Proteínas/química , Difracción de Rayos X , Cristalización , Sustancias Macromoleculares , Sincrotrones
4.
J Synchrotron Radiat ; 23(Pt 4): 959-65, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27359145

RESUMEN

Synchronous digitization, in which an optical sensor is probed synchronously with the firing of an ultrafast laser, was integrated into an optical imaging station for macromolecular crystal positioning prior to synchrotron X-ray diffraction. Using the synchronous digitization instrument, second-harmonic generation, two-photon-excited fluorescence and bright field by laser transmittance were all acquired simultaneously with perfect image registry at up to video-rate (15 frames s(-1)). A simple change in the incident wavelength enabled simultaneous imaging by two-photon-excited ultraviolet fluorescence, one-photon-excited visible fluorescence and laser transmittance. Development of an analytical model for the signal-to-noise enhancement afforded by synchronous digitization suggests a 15.6-fold improvement over previous photon-counting techniques. This improvement in turn allowed acquisition on nearly an order of magnitude more pixels than the preceding generation of instrumentation and reductions of well over an order of magnitude in image acquisition times. These improvements have allowed detection of protein crystals on the order of 1 µm in thickness under cryogenic conditions in the beamline. These capabilities are well suited to support serial crystallography of crystals approaching 1 µm or less in dimension.


Asunto(s)
Difracción de Rayos X , Cristalografía por Rayos X , Rayos Láser , Sustancias Macromoleculares , Proteínas , Sincrotrones
5.
Proc Natl Acad Sci U S A ; 108(15): 6127-32, 2011 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21444772

RESUMEN

Radiation damage is a major limitation in crystallography of biological macromolecules, even for cryocooled samples, and is particularly acute in microdiffraction. For the X-ray energies most commonly used for protein crystallography at synchrotron sources, photoelectrons are the predominant source of radiation damage. If the beam size is small relative to the photoelectron path length, then the photoelectron may escape the beam footprint, resulting in less damage in the illuminated volume. Thus, it may be possible to exploit this phenomenon to reduce radiation-induced damage during data measurement for techniques such as diffraction, spectroscopy, and imaging that use X-rays to probe both crystalline and noncrystalline biological samples. In a systematic and direct experimental demonstration of reduced radiation damage in protein crystals with small beams, damage was measured as a function of micron-sized X-ray beams of decreasing dimensions. The damage rate normalized for dose was reduced by a factor of three from the largest (15.6 µm) to the smallest (0.84 µm) X-ray beam used. Radiation-induced damage to protein crystals was also mapped parallel and perpendicular to the polarization direction of an incident 1-µm X-ray beam. Damage was greatest at the beam center and decreased monotonically to zero at a distance of about 4 µm, establishing the range of photoelectrons. The observed damage is less anisotropic than photoelectron emission probability, consistent with photoelectron trajectory simulations. These experimental results provide the basis for data collection protocols to mitigate with micron-sized X-ray beams the effects of radiation damage.


Asunto(s)
Cristalografía por Rayos X , Proteínas/química , Proteínas/efectos de la radiación , Anisotropía , Cristalografía por Rayos X/estadística & datos numéricos , Método de Montecarlo
6.
J Struct Biol ; 184(2): 103-14, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24075949

RESUMEN

The Arabidopsis stem is composed of five tissues - the pith, xylem, phloem, cortex and epidermis - each of which fulfills specific roles in support of the growth and survival of the organism. The lignocellulosic scaffolding of cell walls is specialized to provide optimal support for the diverse functional roles of these layers, but little is known about this specialization. X-ray scattering can be used to study this tissue-specific diversity because the cellulosic components of the cell walls give rise to recognizable scattering features interpretable in terms of the underlying molecular architecture and distinct from the largely unoriented scatter from other constituents. Here we use scanning X-ray microdiffraction from thin sections to characterize the diversity of molecular architecture in the Arabidopsis stem and correlate that diversity to the functional roles the distinct tissues of the stem play in the growth and survival of the organism.


Asunto(s)
Arabidopsis/ultraestructura , Tallos de la Planta/ultraestructura , Arabidopsis/metabolismo , Celulosa/metabolismo , Celulosa/ultraestructura , Microanálisis por Sonda Electrónica , Microfibrillas/ultraestructura , Minerales/metabolismo , Especificidad de Órganos , Epidermis de la Planta/ultraestructura , Difracción de Rayos X
7.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 843-51, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23633594

RESUMEN

The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using ß2 adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHG images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed.


Asunto(s)
Cristalografía por Rayos X/métodos , Microscopía/métodos , Proteínas/química , Animales , Cristalografía por Rayos X/instrumentación , Caballos , Procesamiento de Imagen Asistido por Computador , Mioglobina/química , Conformación Proteica , Receptores Adrenérgicos beta 2/química , Sincrotrones , Difracción de Rayos X
8.
Nature ; 450(7168): 383-7, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17952055

RESUMEN

Structural analysis of G-protein-coupled receptors (GPCRs) for hormones and neurotransmitters has been hindered by their low natural abundance, inherent structural flexibility, and instability in detergent solutions. Here we report a structure of the human beta2 adrenoceptor (beta2AR), which was crystallized in a lipid environment when bound to an inverse agonist and in complex with a Fab that binds to the third intracellular loop. Diffraction data were obtained by high-brilliance microcrystallography and the structure determined at 3.4 A/3.7 A resolution. The cytoplasmic ends of the beta2AR transmembrane segments and the connecting loops are well resolved, whereas the extracellular regions of the beta2AR are not seen. The beta2AR structure differs from rhodopsin in having weaker interactions between the cytoplasmic ends of transmembrane (TM)3 and TM6, involving the conserved E/DRY sequences. These differences may be responsible for the relatively high basal activity and structural instability of the beta2AR, and contribute to the challenges in obtaining diffraction-quality crystals of non-rhodopsin GPCRs.


Asunto(s)
Receptores Adrenérgicos beta 2/química , Antagonistas de Receptores Adrenérgicos beta 2 , Animales , Línea Celular , Cristalización , Cristalografía por Rayos X , Agonismo Inverso de Drogas , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/metabolismo , Leucina/metabolismo , Lípidos/química , Modelos Moleculares , Conformación Proteica , Receptores Adrenérgicos beta 2/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Spodoptera
9.
Artículo en Inglés | MEDLINE | ID: mdl-25383086

RESUMEN

GM/CA at the APS has developed microcrystallography capabilities for structural biology applications. The robust, quad, mini-beam collimators, which enable users to rapidly select between a 5, 10 or 20 micron diameter beam or a scatter guard for the full focused beam, are coupled with several powerful automated software tools that are built into the beamline control system JBluIce-EPICS. Recent successes at beamlines around the world in solving structures from microcrystals (2 - 10 microns) have led to increased demand for high-intensity micro-focus beams. We have designed a new micro-focus endstation to increase the intensity in mini- and micro-beams at GM/CA by one to two orders of magnitude to meet this growing demand. The new optical design is based on the well-established approach of using two-stage demagnification. The existing bimorph mirrors, arranged in a Kirkpatrick-Baez geometry, focus the beam onto slits located upstream of the sample whereby the slit aperture defines a secondary source, that is reimaged with a second pair of mirrors. This design incorporates two focal modes: a mini-beam mode where the beam is focused to 20-micron diameter and a micro-beam mode where it is focused to 5-microns. The size of the secondary source aperture can be varied rapidly (seconds) to adjust the beam size at the sample position in two ranges 20 - 3 micron and 5 - 1 micron. The second set of mirrors will each have two super polished ellipses allowing quick (minutes) interchange between modes.

10.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 3): 176-88, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21358048

RESUMEN

The trio of macromolecular crystallography beamlines constructed by the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT) in Sector 23 of the Advanced Photon Source (APS) have been in growing demand owing to their outstanding beam quality and capacity to measure data from crystals of only a few micrometres in size. To take full advantage of the state-of-the-art mechanical and optical design of these beamlines, a significant effort has been devoted to designing fast, convenient, intuitive and robust beamline controls that could easily accommodate new beamline developments. The GM/CA-CAT beamline controls are based on the power of EPICS for distributed hardware control, the rich Java graphical user interface of Eclipse RCP and the task-oriented philosophy as well as the look and feel of the successful SSRL BluIce graphical user interface for crystallography. These beamline controls feature a minimum number of software layers, the wide use of plug-ins that can be written in any language and unified motion controls that allow on-the-fly scanning and optimization of any beamline component. This paper describes the ways in which BluIce was combined with EPICS and converted into the Java-based JBluIce, discusses the solutions aimed at streamlining and speeding up operations and gives an overview of the tools that are provided by this new open-source control system for facilitating crystallographic experiments, especially in the field of microcrystallography.


Asunto(s)
Cristalografía por Rayos X/métodos , Cristalografía por Rayos X/instrumentación , Programas Informáticos
11.
J Synchrotron Radiat ; 18(Pt 5): 717-22, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21862850

RESUMEN

Automated scanning capabilities have been added to the data acquisition software, JBluIce-EPICS, at the National Institute of General Medical Sciences and the National Cancer Institute Collaborative Access Team (GM/CA CAT) at the Advanced Photon Source. A `raster' feature enables sample centering via diffraction scanning over two-dimensional grids of simple rectangular or complex polygonal shape. The feature is used to locate crystals that are optically invisible owing to their small size or are visually obfuscated owing to properties of the sample mount. The raster feature is also used to identify the best-diffracting regions of large inhomogeneous crystals. Low-dose diffraction images taken at grid positions are automatically processed in real time to provide a quick quality ranking of potential data-collection sites. A `vector collect' feature mitigates the effects of radiation damage by scanning the sample along a user-defined three-dimensional vector during data collection to maximize the use of the crystal volume and the quality of the collected data. These features are integrated into the JBluIce-EPICS data acquisition software developed at GM/CA CAT where they are used in combination with a robust mini-beam of rapidly changeable diameter from 5 µm to 20 µm. The powerful software-hardware combination is being applied to challenging problems in structural biology.


Asunto(s)
Automatización de Laboratorios/métodos , Cristalografía por Rayos X/métodos , Sustancias Macromoleculares/efectos de la radiación , Algoritmos , Sustancias Macromoleculares/química , Programas Informáticos , Sincrotrones , Difracción de Rayos X/métodos
12.
Nature ; 428(6982): 578-81, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15058307

RESUMEN

Muscle contraction is driven by the motor protein myosin II, which binds transiently to an actin filament, generates a unitary filament displacement or 'working stroke', then detaches and repeats the cycle. The stroke size has been measured previously using isolated myosin II molecules at low load, with rather variable results, but not at the higher loads that the motor works against during muscle contraction. Here we used a novel X-ray-interference technique to measure the working stroke of myosin II at constant load in an intact muscle cell, preserving the native structure and function of the motor. We show that the stroke is smaller and slower at higher load. The stroke size at low load is likely to be set by a structural limit; at higher loads, the motor detaches from actin before reaching this limit. The load dependence of the myosin II stroke is the primary molecular determinant of the mechanical performance and efficiency of skeletal muscle.


Asunto(s)
Proteínas Motoras Moleculares/metabolismo , Músculo Esquelético/metabolismo , Miosina Tipo II/metabolismo , Animales , Fenómenos Biomecánicos , Contracción Isométrica , Proteínas Motoras Moleculares/química , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/química , Músculo Esquelético/citología , Miosina Tipo II/química , Ranidae , Rayos X
13.
IUCrJ ; 6(Pt 3): 412-425, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31098022

RESUMEN

Since the first successful serial crystallography (SX) experiment at a synchrotron radiation source, the popularity of this approach has continued to grow showing that third-generation synchrotrons can be viable alternatives to scarce X-ray free-electron laser sources. Synchrotron radiation flux may be increased ∼100 times by a moderate increase in the bandwidth ('pink beam' conditions) at some cost to data analysis complexity. Here, we report the first high-viscosity injector-based pink-beam SX experiments. The structures of proteinase K (PK) and A2A adenosine receptor (A2AAR) were determined to resolutions of 1.8 and 4.2 Šusing 4 and 24 consecutive 100 ps X-ray pulse exposures, respectively. Strong PK data were processed using existing Laue approaches, while weaker A2AAR data required an alternative data-processing strategy. This demonstration of the feasibility presents new opportunities for time-resolved experiments with microcrystals to study structural changes in real time at pink-beam synchrotron beamlines worldwide.

14.
IUCrJ ; 5(Pt 5): 548-558, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30224958

RESUMEN

In recent years, the success of serial femtosecond crystallography and the paucity of beamtime at X-ray free-electron lasers have motivated the development of serial microcrystallography experiments at storage-ring synchrotron sources. However, especially at storage-ring sources, if a crystal is too small it will have suffered significant radiation damage before diffracting a sufficient number of X-rays into Bragg peaks for peak-indexing software to determine the crystal orientation. As a consequence, the data frames of small crystals often cannot be indexed and are discarded. Introduced here is a method based on the expand-maximize-compress (EMC) algorithm to solve protein structures, specifically from data frames for which indexing methods fail because too few X-rays are diffracted into Bragg peaks. The method is demonstrated on a real serial microcrystallography data set whose signals are too weak to be indexed by conventional methods. In spite of the daunting background scatter from the sample-delivery medium, it was still possible to solve the protein structure at 2.1 Šresolution. The ability of the EMC algorithm to analyze weak data frames will help to reduce sample consumption. It will also allow serial microcrystallography to be performed with crystals that are otherwise too small to be feasibly analyzed at storage-ring sources.

15.
J Biomol Screen ; 12(7): 994-8, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17942792

RESUMEN

Small-molecule ligands that change the structure of a protein are likely to affect its function, whereas those causing no structural change are less likely to be functional. Wide-angle x-ray scattering (WAXS) can be easily carried out on proteins and small molecules in solution in the absence of chemical tags or derivatives. The authors demonstrate that WAXS is a sensitive probe of ligand binding to proteins in solution and can distinguish between nonfunctional and productive binding. Furthermore, similar ligand-binding modes translate into similar scattering patterns. This approach has high potential as a novel, generic, low-throughput assay for functional ligand binding.


Asunto(s)
Dispersión de Radiación , Ligandos , Sincrotrones
16.
Methods Mol Biol ; 1607: 219-238, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28573575

RESUMEN

Micro-diffraction tools for macromolecular crystallography, first developed at the end of 1990s and now an integral part of many synchrotron beamlines, enable some of the experiments which were not feasible just a decade or so ago. These include data collection from very small samples, just a few micrometers in size; from larger, but severely inhomogeneous samples; and from samples which are optically invisible. Improved micro-diffraction tools led to improved signal-to-noise ratio, to mitigation of radiation damage in some cases, and to better-designed diffraction experiments. Small, micron-scale beams can be attained in different ways and knowing the details of the implementation is important in order to design the diffraction experiment properly. Similarly, precision, reproducibility and stability of the goniometry, and caveats of detection systems need to be taken into account. Lastly, to make micro-diffraction widely applicable, the sophistication, robustness, and user-friendliness of these tools are just as important as the technical capabilities.


Asunto(s)
Cristalización/métodos , Cristalografía por Rayos X/métodos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Proteínas/ultraestructura , Interpretación Estadística de Datos , Conformación Proteica , Proteínas/química , Relación Señal-Ruido , Termodinámica , Difracción de Rayos X
17.
Artículo en Inglés | MEDLINE | ID: mdl-29527589

RESUMEN

A supervised learning approach for dynamic sampling (SLADS) was developed to reduce X-ray exposure prior to data collection in protein structure determination. Implementation of this algorithm allowed reduction of the X-ray dose to the central core of the crystal by up to 20-fold compared to current raster scanning approaches. This dose reduction corresponds directly to a reduction on X-ray damage to the protein crystals prior to data collection for structure determination. Implementation at a beamline at Argonne National Laboratory suggests promise for the use of the SLADS approach to aid in the analysis of X-ray labile crystals. The potential benefits match a growing need for improvements in automated approaches for microcrystal positioning.

18.
IUCrJ ; 4(Pt 4): 439-454, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28875031

RESUMEN

Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5-20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Šresolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5-20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals.

19.
Biotechnol Biofuels ; 9: 126, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27330560

RESUMEN

BACKGROUND: Coordination of synthesis and assembly of the polymeric components of cell walls is essential for plant growth and development. Given the degree of co-mingling and cross-linking among cell wall components, cellulose organization must be dependent on the organization of other polymers such as lignin. Here we seek to identify aspects of that codependency by studying the structural organization of cellulose fibrils in stems from Arabidopsis plants harboring mutations in genes encoding enzymes involved in lignin biosynthesis. Plants containing high levels of G-lignin, S-lignin, H-lignin, aldehyde-rich lignin, and ferulic acid-containing lignin, along with plants with very low lignin content were grown and harvested and longitudinal sections of stem were prepared and dried. Scanning X-ray microdiffraction was carried out using a 5-micron beam that moved across the sections in 5-micron steps and complete diffraction patterns were collected at each raster point. Approximately, 16,000 diffraction patterns were analyzed to determine cellulose fibril orientation and order within the tissues making up the stems. RESULTS: Several mutations-most notably those exhibiting (1) down-regulation of cinnamoyl CoA reductase which leads to cell walls deficient in lignin and (2) defect of cinnamic acid 4-hydroxylase which greatly reduces lignin content-exhibited significant decrease in the proportion of oriented cellulose fibrils in the cell wall. Distinctions between tissues were maintained in all variants and even in plants exhibiting dramatic changes in cellulosic order the trends between tissues (where apparent) were generally maintained. The resilience of cellulose to degradative processes was investigated by carrying out the same analysis on samples stored in water for 30 days prior to data collection. This treatment led to significant loss of cellulosic order in plants rich in aldehyde or H-lignin, less change in wild type, and essentially no change in samples with high levels of G- or S-lignin. CONCLUSIONS: These studies demonstrate that changes in lignin biosynthesis lead to significant disruption in the orientation and order of cellulose fibrils in all tissues of the stem. These dramatic phenotypic changes, in mutants with lignin rich in aldehyde or H-units, correlate with the impact the mutations have on the enzymatic degradation of the plant cell wall.

20.
Sci Rep ; 6: 33079, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27629394

RESUMEN

Aggregation of Aß amyloid fibrils into plaques in the brain is a universal hallmark of Alzheimer's Disease (AD), but whether plaques in different individuals are equivalent is unknown. One possibility is that amyloid fibrils exhibit different structures and different structures may contribute differentially to disease, either within an individual brain or between individuals. However, the occurrence and distribution of structural polymorphisms of amyloid in human brain is poorly documented. Here we use X-ray microdiffraction of histological sections of human tissue to map the abundance, orientation and structural heterogeneities of amyloid. Our observations indicate that (i) tissue derived from subjects with different clinical histories may contain different ensembles of fibrillar structures; (ii) plaques harboring distinct amyloid structures can coexist within a single tissue section and (iii) within individual plaques there is a gradient of fibrillar structure from core to margins. These observations have immediate implications for existing theories on the inception and progression of AD.


Asunto(s)
Encéfalo/patología , Placa Amiloide/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Amiloidosis/patología , Encéfalo/metabolismo , Humanos , Fragmentos de Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA