Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 91(23)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28931690

RESUMEN

Previous studies in our laboratory showed that the RNA debranching enzyme (DBR1) is not required for early steps in HIV cDNA formation but is necessary for synthesis of intermediate and late cDNA products. To further characterize this effect, we evaluated the topology of the 5' end of the HIV-1 RNA genome during early infection with and without inhibition of DBR1 synthesis. Cells were transfected with DBR1 short hairpin RNA (shRNA) followed 48 h later by infection with an HIV-1-derived vector containing an RNase H-deficient reverse transcriptase (RT). RNA was isolated at several times postinfection and treated with various RNA-modifying enzymes prior to rapid amplification of 5' cDNA ends (5' RACE) for HIV-1 RNA and quantitative reverse transcriptase PCR (qRT-PCR). In infected cells, DBR1 knockdown inhibited detection of free HIV-1 RNA 5' ends at all time points. The difference in detection of free HIV-1 RNA 5' ends in infected DBR1 knockdown versus control cells was eliminated by in vitro incubation of infected cell RNAs with yeast or human DBR1 enzyme prior to 5' RACE and qRT-PCR. This was dependent on the 2'-5' phosphatase activity of DBR1, since it did not occur when we used the catalytically inactive DBR1(N85A) mutant. Finally, HIV-1 RNA from infected DBR1 knockdown cells was resistant to RNase R that degrades linear RNAs but not RNAs in circular or lariat-like conformations. These results provide evidence for formation of a lariat-like structure involving the 5' end of HIV-1 RNA during an early step in infection and the involvement of DBR1 in resolving it.IMPORTANCE Our findings support a new view of the early steps in HIV genome replication. We show that the HIV genomic RNA is rapidly decapped and forms a lariat-like structure after entering a cell. The lariat-like structure is subsequently resolved by the cellular enzyme DBR1, leaving a 5' phosphate. This pathway is similar to the formation and resolution of pre-mRNA intron lariats and therefore suggests that similar mechanisms may be used by HIV. Our work therefore opens a new area of investigation in HIV replication and may ultimately uncover new targets for inhibiting HIV replication and for preventing the development of AIDS.


Asunto(s)
Genoma Viral , VIH-1/genética , Caperuzas de ARN/química , ARN Nucleotidiltransferasas/genética , ARN Viral/química , Transcripción Reversa , Células HEK293 , VIH-1/química , VIH-1/efectos de los fármacos , VIH-1/fisiología , Humanos , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Nucleotidiltransferasas/deficiencia , ARN Nucleotidiltransferasas/metabolismo , ARN Nucleotidiltransferasas/farmacología , Precursores del ARN/química , Empalme del ARN , ARN Interferente Pequeño , ARN Viral/metabolismo , Saccharomyces cerevisiae/genética , Replicación Viral
2.
J Virol ; 88(12): 7054-69, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24672043

RESUMEN

UNLABELLED: Previous studies showed that short hairpin RNA (shRNA) knockdown of the RNA lariat debranching enzyme (DBR1) led to a decrease in the production of HIV-1 cDNA. To further characterize this effect, DBR1 shRNA was introduced into GHOST-R5X4 cells, followed by infection at a multiplicity near unity with HIV-1 or an HIV-1-derived vector. DNA and RNA were isolated from whole cells and from cytoplasmic and nuclear fractions at different times postinfection. Inhibition of DBR1 had little or no effect on the formation of minus-strand strong-stop cDNA but caused a significant reduction in the formation of intermediate and full-length cDNA. Moreover, minus-strand strong-stop DNA rapidly accumulated in the cytoplasm in the first 2 h of infection but shifted to the nuclear fraction by 6 h postinfection. Regardless of DBR1 inhibition, greater than 95% of intermediate-length and full-length HIV-1 cDNA was found in the nuclear fraction at all time points. Thus, under these experimental conditions, HIV-1 cDNA synthesis was initiated in the cytoplasm and completed in the nucleus or perinuclear region of the infected cell. When nuclear import of the HIV-1 reverse transcription complex was blocked by expressing a truncated form of the mRNA cleavage and polyadenylation factor CPSF6, the completion of HIV-1 vector cDNA synthesis was detected in the cytoplasm, where it was not inhibited by DBR1 knockdown. Refinement of the cell fractionation procedure indicated that the completion of reverse transcription occurred both within nuclei and in the perinuclear region. Taken together the results indicate that in infections at a multiplicity near 1, HIV-1 reverse transcription is completed in the nucleus or perinuclear region of the infected cell, where it is dependent on DBR1. When nuclear transport is inhibited, reverse transcription is completed in the cytoplasm in a DBR1-independent manner. Thus, there are at least two mechanisms of HIV-1 reverse transcription that require different factors and occur in different intracellular locations. IMPORTANCE: This study shows that HIV-1 reverse transcription starts in the cytoplasm but is completed in or on the surface of the nucleus. Moreover, we show that nuclear reverse transcription is dependent on the activity of the human RNA lariat debranchng enzyme (DBR1), while cytoplasmic reverse transcription is not. These findings may provide new avenues for inhibiting HIV-1 replication and therefore may lead to new medicines for treating HIV-1-infected individuals.


Asunto(s)
ADN Complementario/genética , Infecciones por VIH/enzimología , Infecciones por VIH/virología , VIH-1/genética , ARN Nucleotidiltransferasas/genética , Núcleo Celular/virología , Citoplasma/virología , ADN Complementario/metabolismo , Técnicas de Silenciamiento del Gen , Infecciones por VIH/genética , VIH-1/fisiología , Humanos , ARN Nucleotidiltransferasas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Replicación Viral
3.
Nucleic Acids Res ; 38(4): e22, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19955231

RESUMEN

Filamentous phage display has been extensively used to select proteins with binding properties of specific interest. Although many different display platforms using filamentous phage have been described, no comprehensive comparison of their abilities to display similar proteins has been conducted. This is particularly important for the display of cytoplasmic proteins, which are often poorly displayed with standard filamentous phage vectors. In this article, we have analyzed the ability of filamentous phage to display a stable form of green fluorescent protein and modified variants in nine different display vectors, a number of which have been previously proposed as being suitable for cytoplasmic protein display. Correct folding and display were assessed by phagemid particle fluorescence, and with anti-GFP antibodies. The poor correlation between phagemid particle fluorescence and recognition of GFP by antibodies, indicates that proteins may fold correctly without being accessible for display. The best vector used a twin arginine transporter leader to transport the displayed protein to the periplasm, and a coil-coil arrangement to link the displayed protein to g3p. This vector was able to display less robust forms of GFP, including ones with inserted epitopes, as well as fluorescent proteins of the Azami green series. It was also functional in mock selection experiments.


Asunto(s)
Colorantes Fluorescentes/análisis , Vectores Genéticos , Proteínas Fluorescentes Verdes/análisis , Inovirus/genética , Citoplasma/química , Proteínas Fluorescentes Verdes/genética , Plásmidos/química
4.
Protein Eng Des Sel ; 20(2): 69-79, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17277006

RESUMEN

Consensus engineering has been used to increase the stability of a number of different proteins, either by creating consensus proteins from scratch or by modifying existing proteins so that their sequences more closely match a consensus sequence. In this paper we describe the first application of consensus engineering to the ab initio creation of a novel fluorescent protein. This was based on the alignment of 31 fluorescent proteins with >62% homology to monomeric Azami green (mAG) protein, and used the sequence of mAG to guide amino acid selection at positions of ambiguity. This consensus green protein is extremely well expressed, monomeric and fluorescent with red shifted absorption and emission characteristics compared to mAG. Although slightly less stable than mAG, it is better expressed and brighter under the excitation conditions typically used in single molecule fluorescence spectroscopy or confocal microscopy. This study illustrates the power of consensus engineering to create stable proteins using the subtle information embedded in the alignment of similar proteins and shows that the benefits of this approach may extend beyond stability.


Asunto(s)
Secuencia de Consenso , Proteínas Fluorescentes Verdes/química , Ingeniería de Proteínas , Secuencia de Aminoácidos , Proteínas Fluorescentes Verdes/aislamiento & purificación , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido
5.
Bio Protoc ; 7(20): e2584, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34595266

RESUMEN

This technique allows for efficient, highly purified cytoplasmic and nuclear-associated compartment fractionation utilizing NP-40 detergent in mammalian cells. The nuclear membrane is not disturbed during the fractionation thus leaving all nuclear and perinuclear associated components in the nuclear fraction. This protocol has been modified from Sambrook and Russell (2001) in order to downscale the amount of cells needed. To determine the efficiency of fractionation, we recommend using qPCR to compare the subcellular compartments that have been purified with equivalent amount of control whole cell extracts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA