Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Lett ; 11(6): 554-63, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18373680

RESUMEN

Assessments from field plots steer much of our current understanding of global change impacts on forest ecosystem structure and function. Recent widespread observations of net carbon accumulation in field plots have suggested that terrestrial ecosystems may be a carbon sink, possibly resulting from climate change and/or CO(2) fertilization. We hypothesize that field plots may inadequately sample inherently rare mortality events, leading to bias when plot level measurements are scaled up to larger domains. In this study, we constructed a simple computer simulation model of forest dynamics to investigate the effects of disturbance patterns on landscape-scale carbon balance estimates. The model was constructed to be a balanced biosphere at the landscape-scale with a uniform spatial pattern of forest growth rates. Disturbance gap-size distributions across the landscape were modelled with a power-law distribution. Small and frequent disturbances result in a well-mixed heterogeneous forest where even small sample plots represented domain-wide behaviour. However, with disturbances dominated by large and rare events, sample plots as large as 50 ha displayed significant bias towards growth. We suggest that the accuracy of domain level estimates of carbon balance from sample plots are highly sensitive to the distribution of disturbance events across the landscape, and to the number, size and distribution of field plots that comprise the estimate. Assumptions that small clusters of field plots may be representative of domain-wide conditions should only be made very cautiously, and warrant further investigation for verification.


Asunto(s)
Carbono/metabolismo , Ecosistema , Modelos Biológicos , Árboles/crecimiento & desarrollo , Brasil , Simulación por Computador
2.
Science ; 318(5853): 1107, 2007 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-18006740

RESUMEN

Hurricane Katrina's impact on U.S. Gulf Coast forests was quantified by linking ecological field studies, Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) image analyses, and empirically based models. Within areas affected by relatively constant wind speed, tree mortality and damage exhibited strong species-controlled gradients. Spatially explicit forest disturbance maps coupled with extrapolation models predicted mortality and severe structural damage to approximately 320 million large trees totaling 105 teragrams of carbon, representing 50 to 140% of the net annual U.S. forest tree carbon sink. Changes in disturbance regimes from increased storm activity expected under a warming climate will reduce forest biomass stocks, increase ecosystem respiration, and may represent an important positive feedback mechanism to elevated atmospheric carbon dioxide.


Asunto(s)
Carbono , Desastres , Árboles , Biomasa , Dióxido de Carbono , Ecosistema , Sudeste de Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA