Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Biol ; 21(1): 17, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726088

RESUMEN

BACKGROUND: The majority of genes in the human genome is present in two copies but the expression levels of both alleles is not equal. Allelic imbalance is an aspect of gene expression relevant not only in the context of genetic variation, but also to understand the pathophysiology of genes implicated in genetic disorders, in particular, dominant genetic diseases where patients possess one normal and one mutant allele. Polyglutamine (polyQ) diseases are caused by the expansion of CAG trinucleotide tracts within specific genes. Spinocerebellar ataxia type 3 (SCA3) and Huntington's disease (HD) patients harbor one normal and one mutant allele that differ in the length of CAG tracts. However, assessing the expression level of individual alleles is challenging due to the presence of abundant CAG repeats in the human transcriptome, which make difficult the design of allele-specific methods, as well as of therapeutic strategies to selectively engage CAG sequences in mutant transcripts. RESULTS: To precisely quantify expression in an allele-specific manner, we used SNP variants that are linked to either normal or CAG expanded alleles of the ataxin-3 (ATXN3) and huntingtin (HTT) genes in selected patient-derived cell lines. We applied a SNP-based quantitative droplet digital PCR (ddPCR) protocol for precise determination of the levels of transcripts in cellular and mouse models. For HD, we showed that the process of cell differentiation can affect the ratio between endogenous alleles of HTT mRNA. Additionally, we reported changes in the absolute number of the ATXN3 and HTT transcripts per cell during neuronal differentiation. We also implemented our assay to reliably monitor, in an allele-specific manner, the silencing efficiency of mRNA-targeting therapeutic approaches for HD. Finally, using the humanized Hu128/21 HD mouse model, we showed that the ratio of normal and mutant HTT transgene expression in brain slightly changes with the age of mice. CONCLUSIONS: Using allele-specific ddPCR assays, we observed differences in allele expression levels in the context of SCA3 and HD. Our allele-selective approach is a reliable and quantitative method to analyze low abundant transcripts and is performed with high accuracy and reproducibility. Therefore, the use of this approach can significantly improve understanding of allele-related mechanisms, e.g., related with mRNA processing that may be affected in polyQ diseases.


Asunto(s)
Proteínas Represoras , Expansión de Repetición de Trinucleótido , Humanos , Ratones , Animales , Alelos , Ataxina-3/genética , Ataxina-3/metabolismo , Reproducibilidad de los Resultados , Expansión de Repetición de Trinucleótido/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína Huntingtina/genética , Proteínas Represoras/genética
2.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673939

RESUMEN

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Asunto(s)
Ataxina-7 , Dependovirus , Modelos Animales de Enfermedad , Péptidos , Fenotipo , ARN Interferente Pequeño , Ataxias Espinocerebelosas , Expansión de Repetición de Trinucleótido , Animales , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/terapia , Ataxias Espinocerebelosas/metabolismo , Péptidos/genética , Dependovirus/genética , Ratones , Ataxina-7/genética , Ataxina-7/metabolismo , Expansión de Repetición de Trinucleótido/genética , ARN Interferente Pequeño/genética , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Células de Purkinje/metabolismo , Células de Purkinje/patología , Ratones Transgénicos , Cerebelo/metabolismo , Cerebelo/patología , Humanos , Terapia Genética/métodos , Alelos
3.
Mov Disord ; 38(4): 526-536, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36809552

RESUMEN

Dentatorubral-pallidoluysian atrophy (DRPLA) is a rare, incurable genetic disease that belongs to the group of polyglutamine (polyQ) diseases. DRPLA is the most common in the Japanese population; however, its global prevalence is also increasing due to better clinical recognition. It is characterized by cerebellar ataxia, myoclonus, epilepsy, dementia, and chorea. DRPLA is caused by dynamic mutation of CAG repeat expansion in ATN1 gene encoding the atrophin-1 protein. In the cascade of molecular disturbances, the pathological form of atrophin-1 is the initial factor, which has not been precisely characterized so far. Reports indicate that DRPLA is associated with disrupted protein-protein interactions (in which an expanded polyQ tract plays a crucial role), as well as gene expression deregulation. There is a great need to design efficient therapy that would address the underlying neurodegenerative process and thus prevent or alleviate DRPLA symptoms. An in-depth understanding of the normal atrophin-1 function and mutant atrophin-1 dysfunction is crucial for this purpose. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Ataxia Cerebelosa , Epilepsias Mioclónicas Progresivas , Humanos , Atrofia , Ataxia Cerebelosa/genética , Mutación/genética , Epilepsias Mioclónicas Progresivas/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
4.
Cell Mol Life Sci ; 78(4): 1577-1596, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32696070

RESUMEN

Polyglutamine (polyQ) diseases are incurable neurological disorders caused by CAG repeat expansion in the open reading frames (ORFs) of specific genes. This type of mutation in the HTT gene is responsible for Huntington's disease (HD). CAG repeat-targeting artificial miRNAs (art-miRNAs) were shown as attractive therapeutic approach for polyQ disorders as they caused allele-selective decrease in the level of mutant proteins. Here, using polyQ disease models, we aimed to demonstrate how miRNA-based gene expression regulation is dependent on target sequence features. We show that the silencing efficiency and selectivity of art-miRNAs is influenced by the localization of the CAG repeat tract within transcript and the specific sequence context. Furthermore, we aimed to reveal the events leading to downregulation of mutant polyQ proteins and found very rapid activation of translational repression and HTT transcript deadenylation. Slicer-activity of AGO2 was dispensable in this process, as determined in AGO2 knockout cells generated with CRISPR-Cas9 technology. We also showed highly allele-selective downregulation of huntingtin in human HD neural progenitors (NPs). Taken together, art-miRNA activity may serve as a model of the cooperative activity and targeting of ORF regions by endogenous miRNAs.


Asunto(s)
Proteínas Argonautas/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/terapia , MicroARNs/genética , Alelos , Sistemas CRISPR-Cas/genética , Técnicas de Inactivación de Genes , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , MicroARNs/síntesis química , MicroARNs/farmacología , Mutación/genética , Sistemas de Lectura Abierta/genética , Péptidos/genética , Biosíntesis de Proteínas/efectos de los fármacos , Interferencia de ARN , Expansión de Repetición de Trinucleótido/efectos de los fármacos , Expansión de Repetición de Trinucleótido/genética
5.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34200099

RESUMEN

Non-coding RNAs (ncRNAs) have been reported to be implicated in cell fate determination and various human diseases. All ncRNA molecules are emerging as key regulators of diverse cellular processes; however, little is known about the regulatory interaction among these various classes of RNAs. It has been proposed that the large-scale regulatory network across the whole transcriptome is mediated by competing endogenous RNA (ceRNA) activity attributed to both protein-coding and ncRNAs. ceRNAs are considered to be natural sponges of miRNAs that can influence the expression and availability of multiple miRNAs and, consequently, the global mRNA and protein levels. In this review, we summarize the current understanding of the role of ncRNAs in two neuromuscular diseases, myotonic dystrophy type 1 and 2 (DM1 and DM2), and the involvement of expanded CUG and CCUG repeat-containing transcripts in miRNA-mediated RNA crosstalk. More specifically, we discuss the possibility that long repeat tracts present in mutant transcripts can be potent miRNA sponges and may affect ceRNA crosstalk in these diseases. Moreover, we highlight practical information related to innovative disease modelling and studying RNA regulatory networks in cells. Extending knowledge of gene regulation by ncRNAs, and of complex regulatory ceRNA networks in DM1 and DM2, will help to address many questions pertinent to pathogenesis and treatment of these disorders; it may also help to better understand general rules of gene expression and to discover new rules of gene control.


Asunto(s)
Redes Reguladoras de Genes , MicroARNs/genética , Distrofia Miotónica/patología , ARN Circular/genética , ARN Mensajero/genética , Animales , Humanos , Distrofia Miotónica/genética
6.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557131

RESUMEN

Among the main challenges in further advancing therapeutic strategies for Huntington's disease (HD) is the development of biomarkers which must be applied to assess the efficiency of the treatment. HD is a dreadful neurodegenerative disorder which has its source of pathogenesis in the central nervous system (CNS) but is reflected by symptoms in the periphery. Visible symptoms include motor deficits and slight changes in peripheral tissues, which can be used as hallmarks for prognosis of the course of HD, e.g., the onset of the disease symptoms. Knowing how the pathology develops in the context of whole organisms is crucial for the development of therapy which would be the most beneficial for patients, as well as for proposing appropriate biomarkers to monitor disease progression and/or efficiency of treatment. We focus here on molecular peripheral biomarkers which could be used as a measurable outcome of potential therapy. We present and discuss a list of wet biomarkers which have been proposed in recent years to measure pre- and postsymptomatic HD. Interestingly, investigation of peripheral biomarkers in HD can unravel new aspects of the disease pathogenesis. This especially refers to inflammatory proteins or specific immune cells which attract scientific attention in neurodegenerative disorders.


Asunto(s)
Biomarcadores , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/metabolismo , Toma de Decisiones Clínicas , Manejo de la Enfermedad , Progresión de la Enfermedad , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/etiología , Enfermedad de Huntington/terapia , Mutación , Estrés Oxidativo , Pronóstico , ARN Mensajero/metabolismo
7.
Przegl Epidemiol ; 75(1): 14-26, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34328283

RESUMEN

INTRODUCTION: Since the SARS-CoV-2 emergence in 2019/2020, at least 158 million infections with this pathogen have been recorded, of which 3.29 million infected people have died. Due to the non-specific symptoms of SARS-CoV-2 infection, laboratory tests based on RT-PCR (reverse transcription and polymerase chain reaction) are mainly used in the diagnosis of COVID-19 disease. AIM: The aim of this study is to compare the molecular tests available on the Polish market for the diagnosis of SARS-CoV2 infection. RESULTS: Based on the data provided by the manufacturers and the performed laboratory analyses, we have shown that the available diagnostic kits differ mainly in the sensitivity and duration of the reaction. CONCLUSION: Due to the ongoing COVID-19 pandemic, the indicated parameters are key to effective control of the spread of SARS-CoV2, and therefore should be mainly taken into account when choosing and purchasing by diagnostic centres.


Asunto(s)
COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Carga Viral , Humanos , Polonia , Sensibilidad y Especificidad
8.
Int J Mol Sci ; 21(5)2020 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-32182692

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by the expansion of CAG repeats in exon 1 of the huntingtin gene (HTT). Despite its monogenic nature, HD pathogenesis is still not fully understood, and no effective therapy is available to patients. The development of new techniques such as genome engineering has generated new opportunities in the field of disease modeling and enabled the generation of isogenic models with the same genetic background. These models are very valuable for studying the pathogenesis of a disease and for drug screening. Here, we report the generation of a series of homozygous HEK 293T cell lines with different numbers of CAG repeats at the HTT locus and demonstrate their usefulness for testing therapeutic reagents. In addition, using the CRISPR-Cas9 system, we corrected the mutation in HD human induced pluripotent stem cells and generated a knock-out of the HTT gene, thus providing a comprehensive set of isogenic cell lines for HD investigation.


Asunto(s)
Sistemas CRISPR-Cas/genética , Enfermedad de Huntington/genética , Edición Génica , Células HEK293 , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Expansión de Repetición de Trinucleótido/genética
9.
Postepy Biochem ; 66(1): 1-9, 2020 03 31.
Artículo en Polaco | MEDLINE | ID: mdl-33320475

RESUMEN

Huntington's disease (HD) is a genetic disease caused by expanded CAG repeat tract in exon 1 of the HTT gene that codes for huntingtin. Since the first symptoms of the disease the average life expectancy is 15-20 years, when the symptoms resulting from neurodegeneration are progressing. Therefore, there is a great demand for an effective HD treatment method. Various therapeutic strategies are being developed based on mechanisms of gene expression silencing, including DNA editing techniques. Here, we present the most important currently tested approaches, with particular emphasis on strategies based on the use of antisense oligonucleotides (ASO), RNA interference (RNAi) technology and CRISPR-Cas9. Currently ongoing clinical trials as well as different pharmacological agents are discussed.


Asunto(s)
Silenciador del Gen , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Humanos , Oligonucleótidos Antisentido/genética
10.
RNA Biol ; 15(11): 1399-1409, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30381983

RESUMEN

MicroRNA (miRNA)-mediated crosstalk between coding and non-coding RNAs of various types is known as the competing endogenous RNA (ceRNA) concept. Here, we propose that there is a specific variant of the ceRNA language that takes advantage of simple sequence repeat (SSR) wording. We applied bioinformatics tools to identify human transcripts that may be regarded as repeat-associated ceRNAs (raceRNAs). Multiple protein-coding transcripts, transcribed pseudogenes, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) showing this potential were identified, and numerous miRNAs were predicted to bind to SSRs. We propose that simple repeats expanded in various hereditary neurological diseases may act as sponges for miRNAs containing complementary repeats that would affect raceRNA crosstalk. Based on the representation of specific SSRs in transcripts, expression data for SSR-binding miRNAs and expression profiling data from patients, we determined that raceRNA crosstalk is most likely to be perturbed in the case of myotonic dystrophy type 1 (DM1) and type 2 (DM2).


Asunto(s)
MicroARNs/genética , Repeticiones de Microsatélite/genética , Distrofia Miotónica/genética , ARN Mensajero/genética , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Distrofia Miotónica/patología , ARN/genética , ARN Circular , ARN Largo no Codificante/genética
11.
Nucleic Acids Res ; 42(11): 6787-810, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24848018

RESUMEN

Considerable advances have been recently made in understanding the molecular aspects of pathogenesis and in developing therapeutic approaches for polyglutamine (polyQ) diseases. Studies on pathogenic mechanisms have extended our knowledge of mutant protein toxicity, confirmed the toxicity of mutant transcript and identified other toxic RNA and protein entities. One very promising therapeutic strategy is targeting the causative gene expression with oligonucleotide (ON) based tools. This straightforward approach aimed at halting the early steps in the cascade of pathogenic events has been widely tested for Huntington's disease and spinocerebellar ataxia type 3. In this review, we gather information on the use of antisense oligonucleotides and RNA interference triggers for the experimental treatment of polyQ diseases in cellular and animal models. We present studies testing non-allele-selective and allele-selective gene silencing strategies. The latter include targeting SNP variants associated with mutations or targeting the pathologically expanded CAG repeat directly. We compare gene silencing effectors of various types in a number of aspects, including their design, efficiency in cell culture experiments and pre-clinical testing. We discuss advantages, current limitations and perspectives of various ON-based strategies used to treat polyQ diseases.


Asunto(s)
Enfermedades Genéticas Congénitas/terapia , Oligonucleótidos Antisentido , Interferencia de ARN , Expansión de Repetición de Trinucleótido , Animales , Enfermedades Genéticas Congénitas/genética , Mutación , Péptidos/genética
12.
Cell Mol Life Sci ; 71(12): 2253-70, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24468964

RESUMEN

MicroRNAs comprise a large family of short, non-coding RNAs that are present in most eukaryotic organisms and are typically involved in downregulating the expression of protein-coding genes. The detailed mechanisms of miRNA functioning in animals and plants have been under investigation for more than decade. In mammalian cells, miRNA guides the effector complex miRISC to bind with partially complementary sequences, usually within the 3'UTR of mRNAs, and inhibit protein synthesis with or without transcript degradation. In addition to these main mechanisms, several other modes of miRNA-mediated gene expression regulation have been described, but their scale and importance remain a matter of debate. In this review, we briefly summarize the pathway of miRNA precursor processing during miRNA biogenesis and continue with the description of the miRISC assembly process. Then, we present the miRNA-mediated mechanisms of gene expression regulation in detail, and we gather information concerning the proteins involved in these processes. In addition, we briefly refer to the current applications of miRNA mechanisms in therapeutic strategies. Finally, we highlight some of the remaining controversies surrounding the regulation of mammalian gene expression by miRNAs.


Asunto(s)
Células Eucariotas/metabolismo , Regulación de la Expresión Génica , MicroARNs/metabolismo , Animales , Sitios de Unión , Terapia Genética/métodos , Humanos , MicroARNs/genética , Iniciación de la Cadena Peptídica Traduccional , Ribonucleoproteínas/metabolismo
13.
Nucleic Acids Res ; 41(22): 10426-37, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24038471

RESUMEN

Huntington's disease (HD) is a neurodegenerative genetic disorder caused by the expansion of the CAG repeat in the translated sequence of the HTT gene. This expansion generates a mutant huntingtin protein that contains an abnormally elongated polyglutamine tract, which, together with mutant transcript, causes cellular dysfunction. Currently, there is no curative treatment available to patients suffering from HD; however, the selective inhibition of the mutant allele expression is a promising therapeutic option. In this study, we developed a new class of CAG repeat-targeting silencing reagents that consist of self-duplexing CUG repeats. Self-duplex formation was induced through one or several U-base substitutions. A number of self-duplexing guide-strand-only short interfering RNAs have been tested through transfection into cells derived from HD patients, showing distinct activity profiles. The best reagents were highly discriminatory between the normal and mutant HTT alleles (allele selectivity) and the HTT transcript and other transcripts containing shorter CAG repeats (gene selectivity). We also demonstrated that the self-duplexing CUG repeat short interfering RNAs use the RNA interference pathway to elicit silencing, and repeat-targeting reagents showed similar activity and selectivity when expressed from short hairpin RNA vectors to achieve more durable silencing effects.


Asunto(s)
Enfermedad de Huntington/genética , Mutación , Proteínas del Tejido Nervioso/genética , Interferencia de ARN , ARN Interferente Pequeño/química , Secuencias Repetitivas de Ácidos Nucleicos , Alelos , Células Cultivadas , Vectores Genéticos , Humanos , Proteína Huntingtina , Proteínas del Tejido Nervioso/metabolismo
14.
Nucleic Acids Res ; 40(1): 11-26, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21908410

RESUMEN

This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases.


Asunto(s)
ARN Mensajero/química , Secuencias Repetitivas de Ácidos Nucleicos , Expansión de Repetición de Trinucleótido , Humanos , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/terapia , Proteínas/metabolismo , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/metabolismo
15.
Nucleic Acids Res ; 39(13): 5578-85, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21427085

RESUMEN

The specific silencing of the gene of interest is the major objective of RNA interference technology; therefore, unique sequences but not abundant sequence repeats are targeted by silencing reagents. Here, we describe the targeting of expanded CAG repeats that occur in transcripts derived from the mutant allele of the gene implicated in Huntington's disease (HD) in the presence of the normal allele and other human mRNAs containing CAG and CUG repeat tracts. We show that a high degree of silencing selectivity may be achieved between the repeated sequences. We demonstrate preferential suppression of the mutant huntingtin allele and concomitant activation of the normal huntingtin allele in cell lines derived from HD patients that were transfected with short RNA duplexes composed of CAG and CUG repeats containing mutations at specific positions. These effects may lead to promising therapeutic modalities for HD, a condition for which no therapy presently exists.


Asunto(s)
Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Interferencia de ARN , ARN Bicatenario , Expansión de Repetición de Trinucleótido , Alelos , Células Cultivadas , Humanos , Proteína Huntingtina , ARN Bicatenario/química , ARN Mensajero/química , ARN Interferente Pequeño/química
16.
Front Mol Neurosci ; 16: 1133209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36993784

RESUMEN

Recent research integrates novel technologies and methods from the interface of RNA biology and neuroscience. This advancing integration of both fields creates new opportunities in neuroscience to deepen the understanding of gene expression programs and their regulation that underlies the cellular heterogeneity and physiology of the central nervous system. Currently, transcriptional heterogeneity can be studied in individual neural cell types in health and disease. Furthermore, there is an increasing interest in RNA technologies and their application in neurology. These aspects were discussed at an online conference that was shortly named NeuroRNA.

17.
BMC Mol Biol ; 13: 6, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22397573

RESUMEN

BACKGROUND: RNA interference (RNAi) and antisense strategies provide experimental therapeutic agents for numerous diseases, including polyglutamine (polyQ) disorders caused by CAG repeat expansion. We compared the potential of different oligonucleotide-based strategies for silencing the genes responsible for several polyQ diseases, including Huntington's disease and two spinocerebellar ataxias, type 1 and type 3. The strategies included nonallele-selective gene silencing, gene replacement, allele-selective SNP targeting and CAG repeat targeting. RESULTS: Using the patient-derived cell culture models of polyQ diseases, we tested various siRNAs, and antisense reagents and assessed their silencing efficiency and allele selectivity. We showed considerable allele discrimination by several SNP targeting siRNAs based on a weak G-G or G-U pairing with normal allele and strong G-C pairing with mutant allele at the site of RISC-induced cleavage. Among the CAG repeat targeting reagents the strongest allele discrimination is achieved by miRNA-like functioning reagents that bind to their targets and inhibit their translation without substantial target cleavage. Also, morpholino analog performs well in mutant and normal allele discrimination but its efficient delivery to cells at low effective concentration still remains a challenge. CONCLUSIONS: Using three cellular models of polyQ diseases and the same experimental setup we directly compared the performance of different oligonucleotide-based treatment strategies that are currently under development. Based on the results obtained by us and others we discussed the advantages and drawbacks of these strategies considering them from several different perspectives. The strategy aimed at nonallele-selective inhibiting of causative gene expression by targeting specific sequence of the implicated gene is the easiest to implement but relevant benefits are still uncertain. The gene replacement strategy that combines the nonallele-selective gene silencing with the expression of the exogenous normal allele is a logical extension of the former and it deserves to be explored further. Both allele-selective RNAi approaches challenge cellular RNA interference machinery to show its ability to discriminate between similar sequences differing in either single base substitutions or repeated sequence length. Although both approaches perform well in allele discrimination most of our efforts are focused on repeat targeting due to its potentially higher universality.


Asunto(s)
Evaluación Preclínica de Medicamentos , Enfermedad de Huntington/genética , Oligonucleótidos/uso terapéutico , Ataxias Espinocerebelosas/genética , Alelos , Ataxina-3 , Línea Celular , Silenciador del Gen , Terapia Genética , Humanos , Proteína Huntingtina , Enfermedad de Huntington/terapia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/uso terapéutico , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ataxias Espinocerebelosas/terapia
18.
Cells ; 11(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35203324

RESUMEN

Repeat expansion diseases are a group of more than 40 disorders that affect mainly the nervous and/or muscular system and include myotonic dystrophies, Huntington's disease, and fragile X syndrome. The mutation-driven expanded repeat tract occurs in specific genes and is composed of tri- to dodeca-nucleotide-long units. Mutant mRNA is a pathogenic factor or important contributor to the disease and has great potential as a therapeutic target. Although repeat expansion diseases are quite well known, there are limited studies concerning polyadenylation events for implicated transcripts that could have profound effects on transcript stability, localization, and translation efficiency. In this review, we briefly present polyadenylation and alternative polyadenylation (APA) mechanisms and discuss their role in the pathogenesis of selected diseases. We also discuss several methods for poly(A) tail measurement (both transcript-specific and transcriptome-wide analyses) and APA site identification-the further development and use of which may contribute to a better understanding of the correlation between APA events and repeat expansion diseases. Finally, we point out some future perspectives on the research into repeat expansion diseases, as well as APA studies.


Asunto(s)
Síndrome del Cromosoma X Frágil , Enfermedad de Huntington , Síndrome del Cromosoma X Frágil/genética , Humanos , Enfermedad de Huntington/genética , Poliadenilación , ARN Mensajero/genética
19.
Stem Cell Res ; 45: 101796, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32361312

RESUMEN

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is autosomal-dominant neurodegenerative disease caused by an expansion of polyglutamine-encoding CAG repeats in the ATXN3 gene. Here we established IBCHi002-A induced pluripotent stem cells (iPSCs) line generated from SCA3 patient fibroblasts by using non-integrative Sendai-virus delivery system of four reprogramming factors. This cellular model provides a valid platform for study SCA3 pathogenesis and potential therapies for this so far incurable disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Machado-Joseph , Ataxina-3/genética , Diferenciación Celular , Línea Celular , Fibroblastos , Humanos , Enfermedad de Machado-Joseph/genética
20.
J Mol Biol ; 432(24): 166699, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33157084

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the ATXN3 gene encoding the ataxin-3 protein. Despite extensive research the exact pathogenic mechanisms of SCA3 are still not understood in depth. In the present study, to gain insight into the toxicity induced by the expanded CAG repeats in SCA3, we comprehensively investigated repeat-associated non-ATG (RAN) translation in various cellular models expressing translated or non-canonically translated ATXN3 sequences with an increasing number of CAG repeats. We demonstrate that two SCA3 RAN proteins, polyglutamine (polyQ) and polyalanine (polyA), are found only in the case of CAG repeats of pathogenic length. Despite having distinct cellular localization, RAN polyQ and RAN polyA proteins are very often coexpressed in the same cell, impairing nuclear integrity and inducing apoptosis. We provide for the first time mechanistic insights into SCA3 RAN translation indicating that ATXN3 sequences surrounding the repeat region have an impact on SCA3 RAN translation initiation and efficiency. We revealed that RAN translation of polyQ proteins starts at non-cognate codons upstream of the CAG repeats, whereas RAN polyA proteins are likely translated within repeats. Furthermore, integrated stress response activation enhances SCA3 RAN translation. Our findings suggest that the ATXN3 sequence context plays an important role in triggering SCA3 RAN translation and that SCA3 RAN proteins may cause cellular toxicity.


Asunto(s)
Ataxina-3/genética , Enfermedad de Machado-Joseph/genética , Proteínas Represoras/genética , Expansión de Repetición de Trinucleótido/genética , Proteína de Unión al GTP ran/genética , Línea Celular , Humanos , Enfermedad de Machado-Joseph/patología , Péptidos/genética , Biosíntesis de Proteínas/genética , Repeticiones de Trinucleótidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA