Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glob Chang Biol ; 25(12): 4105-4115, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31554025

RESUMEN

Commercial shellfish aquaculture is vulnerable to the impacts of ocean acidification driven by increasing carbon dioxide (CO2 ) absorption by the ocean as well as to coastal acidification driven by land run off and rising sea level. These drivers of environmental acidification have deleterious effects on biomineralization. We investigated shell biomineralization of selectively bred and wild-type families of the Sydney rock oyster Saccostrea glomerata in a study of oysters being farmed in estuaries at aquaculture leases differing in environmental acidification. The contrasting estuarine pH regimes enabled us to determine the mechanisms of shell growth and the vulnerability of this species to contemporary environmental acidification. Determination of the source of carbon, the mechanism of carbon uptake and use of carbon in biomineral formation are key to understanding the vulnerability of shellfish aquaculture to contemporary and future environmental acidification. We, therefore, characterized the crystallography and carbon uptake in the shells of S. glomerata, resident in habitats subjected to coastal acidification, using high-resolution electron backscatter diffraction and carbon isotope analyses (as δ13 C). We show that oyster families selectively bred for fast growth and families selected for disease resistance can alter their mechanisms of calcite crystal biomineralization, promoting resilience to acidification. The responses of S. glomerata to acidification in their estuarine habitat provide key insights into mechanisms of mollusc shell growth under future climate change conditions. Importantly, we show that selective breeding in oysters is likely to be an important global mitigation strategy for sustainable shellfish aquaculture to withstand future climate-driven change to habitat acidification.


Asunto(s)
Biomineralización , Ostreidae , Animales , Calcificación Fisiológica , Concentración de Iones de Hidrógeno , Agua de Mar
2.
J Struct Biol ; 188(1): 39-45, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25180664

RESUMEN

Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000µatm), following 6months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000µatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750µatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification.


Asunto(s)
Dióxido de Carbono/metabolismo , Cambio Climático , Mytilus edulis/microbiología , Océanos y Mares , Exoesqueleto , Animales , Dióxido de Carbono/toxicidad , Cristalografía , Concentración de Iones de Hidrógeno , Mytilus edulis/química
3.
Ecol Evol ; 8(17): 8973-8984, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30271559

RESUMEN

Ocean acidification is occurring globally through increasing CO 2 absorption into the oceans creating particular concern for calcifying species. In addition to ocean acidification, near shore marine habitats are exposed to the deleterious effects of runoff from acid sulfate soils which also decreases environmental pH. This coastal acidification is being exacerbated by climate change-driven sea-level rise and catchment-driven flooding. In response to reduction in habitat pH by ocean and coastal acidification, mollusks are predicted to produce thinner shells of lower structural integrity and reduced mechanical properties threatening mollusk aquaculture. Here, we present the first study to examine oyster biomineralization under acid sulfate soil acidification in a region where growth of commercial bivalve species has declined in recent decades. Examination of the crystallography of the shells of the Sydney rock oyster, Saccostrea glomerata, by electron back scatter diffraction analyses revealed that the signal of environmental acidification is evident in the structure of the biomineral. Saccostrea glomerata, shows phenotypic plasticity, as evident in the disruption of crystallographic control over biomineralization in populations living in coastal acidification sites. Our results indicate that reduced sizes of these oysters for commercial sale may be due to the limited capacity of oysters to biomineralize under acidification conditions. As the impact of this catchment source acidification will continue to be exacerbated by climate change with likely effects on coastal aquaculture in many places across the globe, management strategies will be required to maintain the sustainable culture of these key resources.

4.
Sci Rep ; 6: 21076, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26876022

RESUMEN

Biomineral production in marine organisms employs transient phases of amorphous calcium carbonate (ACC) in the construction of crystalline shells. Increasing seawater pCO2 leads to ocean acidification (OA) with a reduction in oceanic carbonate concentration which could have a negative impact on shell formation and therefore survival. We demonstrate significant changes in the hydrated and dehydrated forms of ACC in the aragonite and calcite layers of Mytilus edulis shells cultured under acidification conditions (1000 µatm pCO2) compared to present day conditions (380 µatm pCO2). In OA conditions, Mytilus edulis has more ACC at crystalisation sites. Here, we use the high-spatial resolution of synchrotron X-ray Photo Emission Electron Microscopy (XPEEM) combined with X-ray Absorption Spectroscopy (XAS) to investigate the influence of OA on the ACC formation in the shells of adult Mytilus edulis. Electron Backscatter Diffraction (EBSD) confirms that OA reduces crystallographic control of shell formation. The results demonstrate that OA induces more ACC formation and less crystallographic control in mussels suggesting that ACC is used as a repair mechanism to combat shell damage under OA. However, the resultant reduced crystallographic control in mussels raises concerns for shell protective function under predation and changing environments.


Asunto(s)
Organismos Acuáticos/metabolismo , Carbonato de Calcio/metabolismo , Océanos y Mares , Ácidos/química , Animales , Organismos Acuáticos/química , Carbonato de Calcio/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Mytilus edulis/química , Mytilus edulis/metabolismo , Espectroscopía de Absorción de Rayos X
5.
Ecol Evol ; 5(21): 4875-84, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26640667

RESUMEN

Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under-saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 µatm pCO 2, and 750, 1000 µatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 µatm pCO 2) compared to those shells grown under ambient conditions (380 µatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.

6.
J R Soc Interface ; 12(103)2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25540244

RESUMEN

Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature.


Asunto(s)
Exoesqueleto/metabolismo , Calcificación Fisiológica , Dióxido de Carbono , Mytilus edulis/metabolismo , Océanos y Mares , Animales , Concentración de Iones de Hidrógeno
7.
Sci Rep ; 4: 6218, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25163895

RESUMEN

Ocean acidification is altering the oceanic carbonate saturation state and threatening the survival of marine calcifying organisms. Production of their calcium carbonate exoskeletons is dependent not only on the environmental seawater carbonate chemistry but also the ability to produce biominerals through proteins. We present shell growth and structural responses by the economically important marine calcifier Mytilus edulis to ocean acidification scenarios (380, 550, 750, 1000 µatm pCO2). After six months of incubation at 750 µatm pCO2, reduced carbonic anhydrase protein activity and shell growth occurs in M. edulis. Beyond that, at 1000 µatm pCO2, biomineralisation continued but with compensated metabolism of proteins and increased calcite growth. Mussel growth occurs at a cost to the structural integrity of the shell due to structural disorientation of calcite crystals. This loss of structural integrity could impact mussel shell strength and reduce protection from predators and changing environments.


Asunto(s)
Exoesqueleto/metabolismo , Mytilus edulis/metabolismo , Agua de Mar/química , Adaptación Fisiológica , Exoesqueleto/crecimiento & desarrollo , Animales , Calcificación Fisiológica , Carbonato de Calcio/metabolismo , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Cambio Climático , Concentración de Iones de Hidrógeno , Mytilus edulis/crecimiento & desarrollo
8.
PLoS One ; 8(8): e71257, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23951121

RESUMEN

We examined the impacts of ocean acidification and copper as co-stressors on the reproduction and population level responses of the benthic copepod Tisbe battagliai across two generations. Naupliar production, growth, and cuticle elemental composition were determined for four pH values: 8.06 (control); 7.95; 7.82; 7.67, with copper addition to concentrations equivalent to those in benthic pore waters. An additive synergistic effect was observed; the decline in naupliar production was greater with added copper at decreasing pH than for decreasing pH alone. Naupliar production modelled for the two generations revealed a negative synergistic impact between ocean acidification and environmentally relevant copper concentrations. Conversely, copper addition enhanced copepod growth, with larger copepods produced at each pH compared to the impact of pH alone. Copepod digests revealed significantly reduced cuticle concentrations of sulphur, phosphorus and calcium under decreasing pH; further, copper uptake increased to toxic levels that lead to reduced naupliar production. These data suggest that ocean acidification will enhance copper bioavailability, resulting in larger, but less fecund individuals that may have an overall detrimental outcome for copepod populations.


Asunto(s)
Dióxido de Carbono/farmacología , Copépodos/efectos de los fármacos , Cobre/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Dióxido de Carbono/metabolismo , Copépodos/crecimiento & desarrollo , Copépodos/metabolismo , Cobre/metabolismo , Ecosistema , Femenino , Fertilidad/efectos de los fármacos , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar/química , Espectrofotometría Atómica , Factores de Tiempo , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA