Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell Proteomics ; 11(9): 745-57, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22700489

RESUMEN

The most common mutation in cystic fibrosis (CF) is a deletion of Phe at position 508 (ΔF508-CFTR). ΔF508-CFTR is a trafficking mutant that is retained in the ER, unable to reach the plasma membrane. To identify compounds and drugs that rescue this trafficking defect, we screened a kinase inhibitor library enriched for small molecules already in the clinic or in clinical trials for the treatment of cancer and inflammation, using our recently developed high-content screen technology (Trzcinska-Daneluti et al. Mol. Cell. Proteomics 8:780, 2009). The top hits of the screen were further validated by (1) biochemical analysis to demonstrate the presence of mature (Band C) ΔF508-CFTR, (2) flow cytometry to reveal the presence of ΔF508-CFTR at the cell surface, (3) short-circuit current (Isc) analysis in Ussing chambers to show restoration of function of the rescued ΔF508-CFTR in epithelial MDCK cells stably expressing this mutant (including EC(50) determinations), and importantly (4) Isc analysis of Human Bronchial Epithelial (HBE) cells harvested from homozygote ΔF508-CFTR transplant patients. Interestingly, several inhibitors of receptor Tyr kinases (RTKs), such as SU5402 and SU6668 (which target FGFRs, VEGFR, and PDGFR) exhibited strong rescue of ΔF508-CFTR, as did several inhibitors of the Ras/Raf/MEK/ERK or p38 pathways (e.g. (5Z)-7-oxozeaenol). Prominent rescue was also observed by inhibitors of GSK-3ß (e.g. GSK-3ß Inhibitor II and Kenpaullone). These results identify several kinase inhibitors that can rescue ΔF508-CFTR to various degrees, and suggest that use of compounds or drugs already in the clinic or in clinical trials for other diseases can expedite delivery of treatment for CF patients.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Transporte Iónico/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Animales , Benzazepinas/farmacología , Línea Celular , Cricetinae , Fibrosis Quística/metabolismo , Perros , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Humanos , Indoles/farmacología , Proteínas de la Membrana , Oxindoles , Propionatos , Transporte de Proteínas , Proteínas Tirosina Quinasas/genética , Pirroles/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptores del Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Eliminación de Secuencia , Transducción de Señal , Zearalenona/análogos & derivados , Zearalenona/farmacología
2.
Mol Cancer Res ; 21(1): 36-50, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36214668

RESUMEN

The ability of a patient tumor to engraft an immunodeficient mouse is the strongest known independent indicator of poor prognosis in early-stage non-small cell lung cancer (NSCLC). Analysis of primary NSCLC proteomes revealed low-level expression of mitochondrial aconitase (ACO2) in the more aggressive, engrafting tumors. Knockdown of ACO2 protein expression transformed immortalized lung epithelial cells, whereas upregulation of ACO2 in transformed NSCLC cells inhibited cell proliferation in vitro and tumor growth in vivo. High level ACO2 increased iron response element binding protein 1 (IRP1) and the intracellular labile iron pool. Impaired cellular proliferation associated with high level ACO2 was reversed by treatment of cells with an iron chelator, whereas increased cell proliferation associated with low level ACO2 was suppressed by treatment of cells with iron. Expression of CDGSH iron-sulfur (FeS) domain-containing protein 1 [CISD1; also known as mitoNEET (mNT)] was modulated by ACO2 expression level and inhibition of mNT by RNA interference or by treatment of cells with pioglitazone also increased iron and cell death. Hence, ACO2 is identified as a regulator of iron homeostasis and mNT is implicated as a target in aggressive NSCLC. IMPLICATIONS: FeS cluster-associated proteins including ACO2, mNT (encoded by CISD1), and IRP1 (encoded by ACO1) are part of an "ACO2-Iron Axis" that regulates iron homeostasis and is a determinant of a particularly aggressive subset of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Hierro/metabolismo , Aconitato Hidratasa/genética , Aconitato Hidratasa/metabolismo , Homeostasis , Proteínas de la Membrana/metabolismo , Proteínas de Unión a Hierro
3.
Mol Cell Proteomics ; 8(4): 780-90, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19088066

RESUMEN

Cystic Fibrosis is caused by mutations in CFTR, with a deletion of a phenylalanine at position 508 (F508del-CFTR) representing the most common mutation. The F508del-CFTR protein exhibits a trafficking defect and is retained in the endoplasmic reticulum. Here we describe the development of a high-content screen based on a functional assay to identify proteins that correct the F508del-CFTR defect. Using a HEK293 MSR GripTite cell line that stably expresses F508del-CFTR, we individually co-expressed approximately 450 unique proteins fused to the Cl(-)-sensitive YFP(H148Q/I152L) mutant. We then tested correction of F508del-CFTR function by the CI(-)/l(-) exchange method following stimulation with forskolin/IBMX/genistein, using quantitative recordings in multiple individual cells with a high-content (high-throughput) Cellomics KSR imaging system. Using this approach, we identified several known and novel proteins that corrected F508del-CFTR function, including STAT1, Endothelin 1, HspA4, SAPK substrate protein 1, AP2M1, LGALS3/galectin-3, Trk-fused gene, Caveolin 2, PAP/REG3alpha, and others. The ability of these correctors to rescue F508del-CFTR trafficking was then validated by demonstrating their enhancement of maturation (appearance of band C) and by cell surface expression of F508del-CFTR bearing HA tag at the ectodomain using confocal microscopy and flow cytometry. These data demonstrate the utility of high-content analyses for identifying proteins that correct mutant CFTR and discover new proteins that stimulate this correction. This assay can also be utilized for RNAi screens to identify inhibitory proteins that block correction of F508del-CFTR, small molecule, and peptide screens.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Proteoma/análisis , Proteómica/métodos , Animales , Ácidos Borónicos/farmacología , Bortezomib , Línea Celular , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Microscopía Confocal , Proteínas Mutantes/metabolismo , Pirazinas/farmacología , Reproducibilidad de los Resultados , Temperatura
4.
Mol Syst Biol ; 3: 116, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17551511

RESUMEN

Ubiquitin-protein ligases (E3s) are responsible for target recognition and regulate stability, localization or function of their substrates. However, the substrates of most E3 enzymes remain unknown. Here, we describe the development of a novel proteomic in vitro ubiquitination screen using a protein microarray platform that can be utilized for the discovery of substrates for E3 ligases on a global scale. Using the yeast E3 Rsp5 as a test system to identify its substrates on a yeast protein microarray that covers most of the yeast (Saccharomyces cerevisiae) proteome, we identified numerous known and novel ubiquitinated substrates of this E3 ligase. Our enzymatic approach was complemented by a parallel protein microarray protein interaction study. Examination of the substrates identified in the analysis combined with phage display screening allowed exploration of binding mechanisms and substrate specificity of Rsp5. The development of a platform for global discovery of E3 substrates is invaluable for understanding the cellular pathways in which they participate, and could be utilized for the identification of drug targets.


Asunto(s)
Análisis por Matrices de Proteínas , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Biblioteca de Péptidos , Unión Proteica , Proteoma , Reproducibilidad de los Resultados , Especificidad por Sustrato
5.
Stem Cell Reports ; 7(4): 787-801, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27618721

RESUMEN

Blood vessels are formed through vasculogenesis, followed by remodeling of the endothelial network through angiogenesis. Many events that occur during embryonic vascular development are recapitulated during adult neoangiogenesis, which is critical to tumor growth and metastasis. Current antiangiogenic tumor therapies, based largely on targeting the vascular endothelial growth factor pathway, show limited clinical benefits, thus necessitating the discovery of alternative targets. Here we report the development of a robust embryonic stem cell-based vascular differentiation assay amenable to small-molecule screens to identify novel modulators of angiogenesis. In this context, RSK and TTK were identified as angiogenic modulators. Inhibition of these pathways inhibited angiogenesis in embryoid bodies and human umbilical vein endothelial cells. Furthermore, inhibition of RSK and TTK reduced tumor growth, vascular density, and improved survival in an in vivo Lewis lung carcinoma mouse model. Our study suggests that RSK and TTK are potential targets for antiangiogenic therapy, and provides an assay system for further pathway screens.


Asunto(s)
Vasos Sanguíneos/embriología , Vasos Sanguíneos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Femenino , Humanos , Ratones , Morfogénesis , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Organogénesis , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA