Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(5): 2387-2396, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35080872

RESUMEN

Metal-organic framework-808 has been functionalized with 11 amino acids (AA) to produce a series of MOF-808-AA structures. The adsorption of CO2 under flue gas conditions revealed that glycine- and dl-lysine-functionalized MOF-808 (MOF-808-Gly and -dl-Lys) have the highest uptake capacities. Enhanced CO2 capture performance in the presence of water was observed and studied by using single-component sorption isotherms, CO2/H2O binary isotherm, and dynamic breakthrough measurements. The key to the favorable performance was uncovered by deciphering the mechanism of CO2 capture in the pores and attributed to the formation of bicarbonate as evidenced by 13C and 15N solid-state nuclear magnetic resonance spectroscopy studies. On the basis of these results, we examined the performance of MOF-808-Gly in simulated coal flue gas conditions and found that it is possible to capture and release CO2 by vacuum swing adsorption. MOF-808-Gly was cycled at least 80 times with full retention of performance. This study significantly advances our understanding of CO2 chemistry in MOFs by revealing how strongly bound amine moieties to the MOF backbone create the chemistry and environment within the pores, leading to the binding and release of CO2 under mild conditions without application of heat.


Asunto(s)
Aminoácidos/química , Dióxido de Carbono/química , Gases/química , Compuestos Organometálicos/química , Humedad , Incineración , Modelos Moleculares , Estructura Molecular
2.
Chem Soc Rev ; 48(10): 2783-2828, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31032507

RESUMEN

Rapidly increasing atmospheric CO2 concentrations threaten human society, the natural environment, and the synergy between the two. In order to ameliorate the CO2 problem, carbon capture and conversion techniques have been proposed. Metal-organic framework (MOF)-based materials, a relatively new class of porous materials with unique structural features, high surface areas, chemical tunability and stability, have been extensively studied with respect to their applicability to such techniques. Recently, it has become apparent that the CO2 capture capabilities of MOF-based materials significantly boost their potential toward CO2 conversion. Furthermore, MOF-based materials' well-defined structures greatly facilitate the understanding of structure-property relationships and their roles in CO2 capture and conversion. In this review, we provide a comprehensive account of significant progress in the design and synthesis of MOF-based materials, including MOFs, MOF composites and MOF derivatives, and their application to carbon capture and conversion. Special emphases on the relationships between CO2 capture capacities of MOF-based materials and their catalytic CO2 conversion performances are discussed.

3.
J Am Chem Soc ; 139(35): 12125-12128, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28817269

RESUMEN

The use of two primary alkylamine functionalities covalently tethered to the linkers of IRMOF-74-III results in a material that can uptake CO2 at low pressures through a chemisorption mechanism. In contrast to other primary amine-functionalized solid adsorbents that uptake CO2 primarily as ammonium carbamates, we observe using solid state NMR that the major chemisorption product for this material is carbamic acid. The equilibrium of reaction products also shifts to ammonium carbamate when water vapor is present; a new finding that has impact on control of the chemistry of CO2 capture in MOF materials and one that highlights the importance of geometric constraints and the mediating role of water within the pores of MOFs.

4.
Organometallics ; 33(8): 2019-2026, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24882919

RESUMEN

The syntheses of novel dimethylbis(2-pyridyl)borate nickel(II) complexes 4 and 6 are reported. These complexes were unambiguously characterized by X-ray analysis. In dichloromethane solvent, complex 4 undergoes a unique square-planar to square-planar rotation around the nickel(II) center, for which activation parameters of ΔH⧧ = 12.2(1) kcal mol-1 and ΔS⧧ = 0.8(5) eu were measured via NMR inversion recovery experiments. Complex 4 was also observed to isomerize via a relatively slow ring flip: ΔH⧧ = 15.0(2) kcal mol-1; and ΔS⧧ = -4.2(7) eu. DFT studies support the experimentally measured rotation activation energy (cf. calculated ΔH⧧ = 11.1 kcal mol-1) as well as the presence of a high-energy triplet intermediate (ΔH = 8.8 kcal mol-1).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA