Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Acc Chem Res ; 52(1): 140-150, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30592421

RESUMEN

Since the pioneering work of Kochi in the 1970s, iron has attracted great interest for cross-coupling catalysis due to its low cost and toxicity as well as its potential for novel reactivity compared to analogous reactions with precious metals like palladium. Today there are numerous iron-based cross-coupling methodologies available, including challenging alkyl-alkyl and enantioselective methods. Furthermore, cross-couplings with simple ferric salts and additives like NMP and TMEDA ( N-methylpyrrolidone and tetramethylethylenediamine) continue to attract interest in pharmaceutical applications. Despite the tremendous advances in iron cross-coupling methodologies, in situ formed and reactive iron species and the underlying mechanisms of catalysis remain poorly understood in many cases, inhibiting mechanism-driven methodology development in this field. This lack of mechanism-driven development has been due, in part, to the challenges of applying traditional characterization methods such as nuclear magnetic resonance (NMR) spectroscopy to iron chemistry due to the multitude of paramagnetic species that can form in situ. The application of a broad array of inorganic spectroscopic methods (e.g., electron paramagnetic resonance, 57Fe Mössbauer, and magnetic circular dichroism) removes this barrier and has revolutionized our ability to evaluate iron speciation. In conjunction with inorganic syntheses of unstable organoiron intermediates and combined inorganic spectroscopy/gas chromatography studies to evaluate in situ iron reactivity, this approach has dramatically evolved our understanding of in situ iron speciation, reactivity, and mechanisms in iron-catalyzed cross-coupling over the past 5 years. This Account focuses on the key advances made in obtaining mechanistic insight in iron-catalyzed carbon-carbon cross-couplings using simple ferric salts, iron-bisphosphines, and iron- N-heterocyclic carbenes (NHCs). Our studies of ferric salt catalysis have resulted in the isolation of an unprecedented iron-methyl cluster, allowing us to identify a novel reaction pathway and solve a decades-old mystery in iron chemistry. NMP has also been identified as a key to accessing more stable intermediates in reactions containing nucleophiles with and without ß-hydrogens. In iron-bisphosphine chemistry, we have identified several series of transmetalated iron(II)-bisphosphine complexes containing mesityl, phenyl, and alkynyl nucleophile-derived ligands, where mesityl systems were found to be unreliable analogues to phenyls. Finally, in iron-NHC cross-coupling, unique chelation effects were observed in cases where nucleophile-derived ligands contained coordinating functional groups. As with the bisphosphine case, high-spin iron(II) complexes were shown to be reactive and selective in cross-coupling. Overall, these studies have demonstrated key aspects of iron cross-coupling and the utility of detailed speciation and mechanistic studies for the rational improvement and development of iron cross-coupling methods.

2.
Inorg Chem ; 57(14): 8106-8115, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29975519

RESUMEN

A series of uranium amides were synthesized from N, N, N-cyclohexyl(trimethylsilyl)lithium amide [Li][N(TMS)Cy] and uranium tetrachloride to give U(NCySiMe3) x(Cl)4- x, where x = 2, 3, or 4. The diamide was isolated as a bimetallic, bridging lithium chloride adduct ((UCl2(NCyTMS)2)2-LiCl(THF)2), and the tris(amide) was isolated as the lithium chloride adduct of the monometallic species (UCl(NCyTMS)3-LiCl(THF)2). The tetraamide complex was isolated as the four-coordinate pseudotetrahedron. Cyclic voltammetry revealed an easily accessible reversible oxidation wave, and upon chemical oxidation, the UV amido cation was isolated in near-quantitative yields. The synthesis of this family of compounds allows a direct comparison of the electronic structure and properties of isostructural UIV and UV tetraamide complexes. Spectroscopic investigations consisting of UV-vis, NIR, MCD, EPR, and U L3-edge XANES, along with density functional and wave function calculations, of the four-coordinate UIV and UV complexes have been used to understand the electronic structure of these pseudotetrahedral complexes.

3.
Phys Chem Chem Phys ; 19(26): 17300-17313, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28642944

RESUMEN

We present a combined ab initio theoretical and experimental study of the magnetic circular dichroism (MCD) spectrum of the octahedral UCl6- complex ion in the UV-Vis spectral region. The ground state is an orbitally non-degenerate doublet E5/2u and the MCD is a -term spectrum caused by spin-orbit coupling. Calculations of the electronic spectrum at various levels of theory indicate that differential dynamic electron correlation has a strong influence on the energies of the dipole-allowed transitions and the envelope of the MCD spectrum. The experimentally observed bands are assigned to dipole-allowed ligand-to-metal charge transfer into the 5f shell, and 5f to 6d transitions. Charge transfer excitations into the U 6d shell appear at much higher energies. The MCD-allowed transitions can be assigned via their signs of the -terms: Under Oh double group symmetry, E5/2u → E5/2g transitions have negative -terms whereas E5/2u → F3/2g transitions have positive -terms if the ground state g-factor is negative, as it is the case for UCl6-.

4.
J Am Chem Soc ; 138(36): 11654-63, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27584879

RESUMEN

The development of active, robust systems for light-driven hydrogen production from aqueous protons based on catalysts and light absorbers composed solely of earth abundant elements remains a challenge in the development of an artificial photosynthetic system for water splitting. Herein, we report the synthesis and characterization of four closely related Fe bis(benzenedithiolate) complexes that exhibit catalytic activity for hydrogen evolution when employed in systems with water-soluble CdSe QDs as photosensitizer and ascorbic acid as a sacrificial electron source under visible light irradiation (520 nm). The complex with the most electron-donating dithiolene ligand exhibits the highest activity, the overall order of activity correlating with the reduction potential of the formally Fe(III) dimeric dianions. Detailed studies of the effect of different capping agents and the extent of surface coverage of these capping agents on the CdSe QD surfaces reveal that they affect system activity and provide insight into the continued development of such systems containing QD light absorbers and molecular catalysts for H2 formation.

5.
Inorg Chem ; 55(1): 272-82, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26654097

RESUMEN

Chelating phosphines are effective additives and supporting ligands for a wide array of iron-catalyzed cross-coupling reactions. While recent studies have begun to unravel the nature of the in situ-formed iron species in several of these reactions, including the identification of the active iron species, insight into the origin of the differential effectiveness of bisphosphine ligands in catalysis as a function of their backbone and peripheral steric structures remains elusive. Herein, we report a spectroscopic and computational investigation of well-defined FeCl2(bisphosphine) complexes (bisphosphine = SciOPP, dpbz, (tBu)dppe, or Xantphos) and known iron(I) variants to systematically discern the relative effects of bisphosphine backbone character and steric substitution on the overall electronic structure and bonding within their iron complexes across oxidation states implicated to be relevant in catalysis. Magnetic circular dichroism (MCD) and density functional theory (DFT) studies demonstrate that common o-phenylene and saturated ethyl backbone motifs result in small but non-negligible perturbations to 10Dq(Td) and iron-bisphosphine bonding character at the iron(II) level within isostructural tetrahedra as well as in five-coordinate iron(I) complexes FeCl(dpbz)2 and FeCl(dppe)2. Notably, coordination of Xantphos to FeCl2 results in a ligand field significantly reduced relative to those of its iron(II) partners, where a large bite angle and consequent reduced iron-phosphorus Mayer bond orders (MBOs) could play a role in fostering the unique ability of Xantphos to be an effective additive in Kumada and Suzuki-Miyaura alkyl-alkyl cross-couplings. Furthermore, it has been found that the peripheral steric bulk of the SciOPP ligand does little to perturb the electronic structure of FeCl2(SciOPP) relative to that of the analogous FeCl2(dpbz) complex, potentially suggesting that differences in the steric properties of these ligands might be more important in determining in situ iron speciation and reactivity.


Asunto(s)
Carbono/química , Compuestos de Hierro/química , Catálisis , Dicroismo Circular , Electrones , Estructura Molecular , Espectroscopía de Mossbauer
6.
Organometallics ; 37(18): 3093-3101, 2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-30467449

RESUMEN

Iron and N-heterocyclic carbenes (NHCs) have proven to be a successful pair in catalysis, with reactivity and selectivity being highly dependent on the nature of the NHC ligand backbone saturation and N-substituents. Four (NHC)Fe(1,3-dioxan-2-ylethyl)2 complexes have been isolated and spectroscopically characterized to correlate their reactivity to steric effects of the NHC from both the backbone saturation and N-substituents. Only in the extreme case of SIPr where NHC backbone and N-substituent steric effects are the largest is there a major structural perturbation observed crystallographically. The addition of only two hydrogen atoms is sufficient for a drastic change in product selectivity in the coupling of 1-iodo-3-phenylpropane with (2-(1,3-dioxan-2-yl)ethyl)magnesium bromide due to resulting structural perturbations to the precatalyst. Mössbauer spectroscopy and magnetic circular dichroism enabled the correlation of covalency and steric bulk in the SIPr case to its poor selectivity in alkyl-alkyl cross-coupling with iron. Density functional theory calculations provided insight into the electronic structure and molecular orbital effects of ligation changes to the iron center. Finally, charge donation analysis and Mayer bond order calculations further confirmed the stronger Fe-ligand bonding in the SIPr complex. Overall, these studies highlight the importance of considering both N-substituent and backbone steric contributions to structure, bonding, and reactivity in iron-NHCs.

7.
Chem Sci ; 9(7): 1878-1891, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29675234

RESUMEN

While iron-NHC catalysed cross-couplings have been shown to be effective for a wide variety of reactions (e.g. aryl-aryl, aryl-alkyl, alkyl-alkyl), the nature of the in situ formed and reactive iron species in effective catalytic systems remains largely undefined. In the current study, freeze-trapped Mössbauer spectroscopy, and EPR studies combined with inorganic synthesis and reaction studies are utilised to define the key in situ formed and reactive iron-NHC species in the Kumada alkyl-alkyl cross-coupling of (2-(1,3-dioxan-2-yl)ethyl)magnesium bromide and 1-iodo-3-phenylpropane. The key reactive iron species formed in situ is identified as (IMes)Fe((1,3-dioxan-2-yl)ethyl)2, whereas the S = 1/2 iron species previously identified in this chemistry is found to be only a very minor off-cycle species (<0.5% of all iron). Reaction and kinetic studies demonstrate that (IMes)Fe((1,3-dioxan-2-yl)ethyl)2 is highly reactive towards the electrophile resulting in two turnovers with respect to iron (kobs > 24 min-1) to generate cross-coupled product with overall selectivity analogous to catalysis. The high resistance of this catalytic system to ß-hydride elimination of the alkyl nucleophile is attributed to its chelation to iron through ligation of carbon and one oxygen of the acetal moiety of the nucleophile. In fact, alternative NHC ligands such as SIPr are less effective in catalysis due to their increased steric bulk inhibiting the ability of the alkyl ligands to chelate. Overall, this study identifies a novel alkyl chelation method to achieve effective alkyl-alkyl cross-coupling with iron(ii)-NHCs, provides direct structural insight into NHC effects on catalytic performance and extends the importance of iron(ii) reactive species in iron-catalysed cross-coupling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA