Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33361150

RESUMEN

Staphylococcus aureus colonizes the skin of the majority of patients with atopic dermatitis (AD), and its presence increases disease severity. Adhesion of S. aureus to corneocytes in the stratum corneum is a key initial event in colonization, but the bacterial and host factors contributing to this process have not been defined. Here, we show that S. aureus interacts with the host protein corneodesmosin. Corneodesmosin is aberrantly displayed on the tips of villus-like projections that occur on the surface of AD corneocytes as a result of low levels of skin humectants known as natural moisturizing factor (NMF). An S. aureus mutant deficient in fibronectin binding protein B (FnBPB) and clumping factor B (ClfB) did not bind to corneodesmosin in vitro. Using surface plasmon resonance, we found that FnBPB and ClfB proteins bound with similar affinities. The S. aureus binding site was localized to the N-terminal glycine-serine-rich region of corneodesmosin. Atomic force microscopy showed that the N-terminal region was present on corneocytes containing low levels of NMF and that blocking it with an antibody inhibited binding of individual S. aureus cells to corneocytes. Finally, we found that S. aureus mutants deficient in FnBPB or ClfB have a reduced ability to adhere to low-NMF corneocytes from patients. In summary, we show that FnBPB and ClfB interact with the accessible N-terminal region of corneodesmosin on AD corneocytes, allowing S. aureus to take advantage of the aberrant display of corneodesmosin that accompanies low NMF in AD. This interaction facilitates the characteristic strong binding of S. aureus to AD corneocytes.


Asunto(s)
Dermatitis Atópica/microbiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Staphylococcus aureus/metabolismo , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana/fisiología , Coagulasa/metabolismo , Dermatitis Atópica/metabolismo , Epidermis , Células Epiteliales/metabolismo , Humanos , Microscopía de Fuerza Atómica , Piel/metabolismo , Piel/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad
2.
Infect Immun ; 85(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28373353

RESUMEN

Staphylococcus aureus skin infection is a frequent and recurrent problem in children with the common inflammatory skin disease atopic dermatitis (AD). S. aureus colonizes the skin of the majority of children with AD and exacerbates the disease. The first step during colonization and infection is bacterial adhesion to the cornified envelope of corneocytes in the outer layer, the stratum corneum. Corneocytes from AD skin are structurally different from corneocytes from normal healthy skin. The objective of this study was to identify bacterial proteins that promote the adherence of S. aureus to AD corneocytes. S. aureus strains from clonal complexes 1 and 8 were more frequently isolated from infected AD skin than from the nasal cavity of healthy children. AD strains had increased ClfB ligand binding activity compared to normal nasal carriage strains. Adherence of single S. aureus bacteria to corneocytes from AD patients ex vivo was studied using atomic force microscopy. Bacteria expressing ClfB recognized ligands distributed over the entire corneocyte surface. The ability of an isogenic ClfB-deficient mutant to adhere to AD corneocytes compared to that of its parent clonal complex 1 clinical strain was greatly reduced. ClfB from clonal complex 1 strains had a slightly higher binding affinity for its ligand than ClfB from strains from other clonal complexes. Our results provide new insights into the first step in the establishment of S. aureus colonization in AD patients. ClfB is a key adhesion molecule for the interaction of S. aureus with AD corneocytes and represents a target for intervention.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Dermatitis Atópica/microbiología , Células Epiteliales/microbiología , Infecciones Cutáneas Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Adhesinas Bacterianas/genética , Adhesión Bacteriana , Preescolar , Femenino , Proteínas Filagrina , Humanos , Masculino , Cavidad Nasal/microbiología , Eliminación de Secuencia , Piel/citología , Piel/microbiología , Staphylococcus aureus/genética
3.
Microbiol Spectr ; 10(3): e0117521, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35647689

RESUMEN

Staphylococcus aureus infections have become a major challenge in health care due to increasing antibiotic resistance. We aimed to design small molecule inhibitors of S. aureus surface proteins to be developed as colonization inhibitors. We identified allantodapsone in an initial screen searching for inhibitors of clumping factors A and B (ClfA and ClfB). We used microbial adhesion assays to investigate the effect of allantodapsone on extracellular matrix protein interactions. Allantodapsone inhibited S. aureus Newman adhesion to fibrinogen with an IC50 of 21.3 µM (95% CI 4.5-102 µM), minimum adhesion inhibitory concentration (MAIC) of 100 µM (40.2 µg/mL). Additionally, allantodapsone inhibited adhesion of Lactococcus lactis strains exogenously expressing the clumping factors to fibrinogen (L. lactis ClfA, IC50 of 3.8 µM [95% CI 1.0-14.3 µM], MAIC 10 µM, 4.0 µg/mL; and L. lactis ClfB, IC50 of 11.0 µM [95% CI 0.9-13.6 µM], MAIC 33 µM, 13.3 µg/mL), indicating specific inhibition. Furthermore, the dapsone and alloxan fragments of allantodapsone did not have any inhibitory effect. Adhesion of S. aureus Newman to L2v loricrin is dependent on the expression of ClfB. Allantodapsone caused a dose dependent inhibition of S. aureus adhesion to the L2v loricrin fragment, with full inhibition at 40 µM (OD600 0.11 ± 0.01). Furthermore, recombinant ClfB protein binding to L2v loricrin was inhibited by allantodapsone (P < 0.0001). Allantodapsone also demonstrated dose dependent inhibition of S. aureus Newman adhesion to cytokeratin 10 (CK10). Allantodapsone is the first small molecule inhibitor of the S. aureus clumping factors with potential for development as a colonization inhibitor. IMPORTANCE S. aureus colonization of the nares and the skin provide a reservoir of bacteria that can be transferred to wounds that can ultimately result in systemic infections. Antibiotic resistance can make these infections difficult to treat with significant associated morbidity and mortality. We have identified and characterized a first-in-class small molecule inhibitor of the S. aureus clumping factors A and B, which has the potential to be developed further as a colonization inhibitor.


Asunto(s)
Queratinas/metabolismo , Infecciones Estafilocócicas , Staphylococcus aureus , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana/fisiología , Fibrinógeno/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA