Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 3815, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444361

RESUMEN

Our knowledge of bacterial nucleoids originates mostly from studies of rod- or crescent-shaped bacteria. Here we reveal that Deinococcus radiodurans, a relatively large spherical bacterium with a multipartite genome, constitutes a valuable system for the study of the nucleoid in cocci. Using advanced microscopy, we show that D. radiodurans undergoes coordinated morphological changes at both the cellular and nucleoid level as it progresses through its cell cycle. The nucleoid is highly condensed, but also surprisingly dynamic, adopting multiple configurations and presenting an unusual arrangement in which oriC loci are radially distributed around clustered ter sites maintained at the cell centre. Single-particle tracking and fluorescence recovery after photobleaching studies of the histone-like HU protein suggest that its loose binding to DNA may contribute to this remarkable plasticity. These findings demonstrate that nucleoid organization is complex and tightly coupled to cell cycle progression in this organism.


Asunto(s)
Proteínas Bacterianas/metabolismo , División Celular , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Deinococcus/fisiología , Orgánulos/metabolismo , Ciclo Celular , ADN Bacteriano/genética , Sitios Genéticos/fisiología , Genoma Bacteriano/fisiología , Microscopía Intravital , Microscopía Fluorescente , Orgánulos/genética
2.
Sci Rep ; 8(1): 14038, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30232348

RESUMEN

Spurious blinking fluorescent spots are often seen in bacteria during single-molecule localization microscopy experiments. Although this 'autoblinking' phenomenon is widespread, its origin remains unclear. In Deinococcus strains, we observed particularly strong autoblinking at the periphery of the bacteria, facilitating its comprehensive characterization. A systematic evaluation of the contributions of different components of the sample environment to autoblinking levels and the in-depth analysis of the photophysical properties of autoblinking molecules indicate that the phenomenon results from transient binding of fluorophores originating mostly from the growth medium to the bacterial cell wall, which produces single-molecule fluorescence through a Point Accumulation for Imaging in Nanoscale Topography (PAINT) mechanism. Our data suggest that the autoblinking molecules preferentially bind to the plasma membrane of bacterial cells. Autoblinking microscopy was used to acquire nanoscale images of live, unlabeled D. radiodurans and could be combined with PALM imaging of PAmCherry-labeled bacteria in two-color experiments. Autoblinking-based super-resolved images provided insight into the formation of septa in dividing bacteria and revealed heterogeneities in the distribution and dynamics of autoblinking molecules within the cell wall.


Asunto(s)
Pared Celular/ultraestructura , Deinococcus/ultraestructura , Imagen Individual de Molécula/métodos , Microscopía Fluorescente , Nanotecnología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA