Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Annu Rev Biochem ; 82: 357-85, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23746258

RESUMEN

Posttranslational modification with small ubiquitin-related modifier (SUMO) proteins is now established as one of the key regulatory protein modifications in eukaryotic cells. Hundreds of proteins involved in processes such as chromatin organization, transcription, DNA repair, macromolecular assembly, protein homeostasis, trafficking, and signal transduction are subject to reversible sumoylation. Hence, it is not surprising that disease links are beginning to emerge and that interference with sumoylation is being considered for intervention. Here, we summarize basic mechanisms and highlight recent developments in the physiology of sumoylation.


Asunto(s)
Proteínas/metabolismo , Transducción de Señal/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Animales , Predisposición Genética a la Enfermedad , Humanos , Transducción de Señal/fisiología
2.
Mol Cell ; 46(3): 287-98, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22464730

RESUMEN

RanBP2/Nup358 is an essential protein with roles in nuclear transport and mitosis, and is one of the few known SUMO E3 ligases. However, why RanBP2 functions in vivo has been unclear: throughout the cell cycle it stably interacts with RanGAP1*SUMO1 and Ubc9, whose binding sites overlap with the E3 ligase region. Here we show that cellular RanBP2 is quantitatively associated with RanGAP1, indicating that complexed rather than free RanBP2 is the relevant E3 ligase. Biochemical reconstitution of the RanBP2/RanGAP1*SUMO1/Ubc9 complex enabled us to characterize its activity on the endogenous substrate Borealin. We find that the complex is a composite E3 ligase rather than an E2-E3 complex, and demonstrate that complex formation induces activation of a catalytic site that shows no activity in free RanBP2. Our findings provide insights into the mechanism of an important E3 ligase, and extend the concept of multisubunit E3 ligases from ubiquitin to the SUMO field.


Asunto(s)
Proteínas Activadoras de GTPasa/fisiología , Chaperonas Moleculares/fisiología , Proteínas de Complejo Poro Nuclear/fisiología , Proteína SUMO-1/fisiología , Enzimas Ubiquitina-Conjugadoras/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Proteína SUMO-1/química , Proteína SUMO-1/metabolismo , Sumoilación , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/fisiología
3.
Mol Cell ; 31(3): 371-82, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18691969

RESUMEN

Posttranslational modification with small ubiquitin-related modifier, SUMO, is a widespread mechanism for rapid and reversible changes in protein function. Considering the large number of known targets, the number of enzymes involved in modification seems surprisingly low: a single E1, a single E2, and a few distinct E3 ligases. Here we show that autosumoylation of the mammalian E2-conjugating enzyme Ubc9 at Lys14 regulates target discrimination. While not altering its activity toward HDAC4, E2-25K, PML, or TDG, sumoylation of Ubc9 impairs its activity on RanGAP1 and strongly activates sumoylation of the transcriptional regulator Sp100. Enhancement depends on a SUMO-interacting motif (SIM) in Sp100 that creates an additional interface with the SUMO conjugated to the E2, a mechanism distinct from Ubc9 approximately SUMO thioester recruitment. The crystal structure of sumoylated Ubc9 demonstrates how the newly created binding interface can provide a gain in affinity otherwise provided by E3 ligases.


Asunto(s)
Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Autoantígenos/metabolismo , Cristalografía por Rayos X , Ésteres/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Enzimas Ubiquitina-Conjugadoras/química
4.
PLoS Biol ; 8(4): e1000350, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20386726

RESUMEN

BICD2 is one of the two mammalian homologues of the Drosophila Bicaudal D, an evolutionarily conserved adaptor between microtubule motors and their cargo that was previously shown to link vesicles and mRNP complexes to the dynein motor. Here, we identified a G2-specific role for BICD2 in the relative positioning of the nucleus and centrosomes in dividing cells. By combining mass spectrometry, biochemical and cell biological approaches, we show that the nuclear pore complex (NPC) component RanBP2 directly binds to BICD2 and recruits it to NPCs specifically in G2 phase of the cell cycle. BICD2, in turn, recruits dynein-dynactin to NPCs and as such is needed to keep centrosomes closely tethered to the nucleus prior to mitotic entry. When dynein function is suppressed by RNA interference-mediated depletion or antibody microinjection, centrosomes and nuclei are actively pushed apart in late G2 and we show that this is due to the action of kinesin-1. Surprisingly, depletion of BICD2 inhibits both dynein and kinesin-1-dependent movements of the nucleus and cytoplasmic NPCs, demonstrating that BICD2 is needed not only for the dynein function at the nuclear pores but also for the antagonistic activity of kinesin-1. Our study demonstrates that the nucleus is subject to opposing activities of dynein and kinesin-1 motors and that BICD2 contributes to nuclear and centrosomal positioning prior to mitotic entry through regulation of both dynein and kinesin-1.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas de la Membrana/metabolismo , Mitosis/fisiología , Poro Nuclear/metabolismo , Animales , Proteínas Portadoras/genética , Línea Celular , Núcleo Celular/ultraestructura , Complejo Dinactina , Humanos , Cinesinas/genética , Proteínas de la Membrana/genética , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/metabolismo , Técnicas del Sistema de Dos Híbridos
5.
Elife ; 62017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-28990926

RESUMEN

Expression of inflammatory genes is determined in part by post-transcriptional regulation of mRNA metabolism but how stimulus- and transcript-dependent nuclear export influence is poorly understood. Here, we report a novel pathway in which LPS/TLR4 engagement promotes nuclear localization of IRAK2 to facilitate nuclear export of a specific subset of inflammation-related mRNAs for translation in murine macrophages. IRAK2 kinase activity is required for LPS-induced RanBP2-mediated IRAK2 sumoylation and subsequent nuclear translocation. Array analysis showed that an SRSF1-binding motif is enriched in mRNAs dependent on IRAK2 for nuclear export. Nuclear IRAK2 phosphorylates SRSF1 to reduce its binding to target mRNAs, which promotes the RNA binding of the nuclear export adaptor ALYREF and nuclear export receptor Nxf1 loading for the export of the mRNAs. In summary, LPS activates a nuclear function of IRAK2 that facilitates the assembly of nuclear export machinery to export selected inflammatory mRNAs to the cytoplasm for translation.


Asunto(s)
Transporte Activo de Núcleo Celular , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Macrófagos/inmunología , ARN Mensajero/metabolismo , Animales , Lipopolisacáridos/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fosforilación , Proteínas de Unión al ARN/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Sumoilación
6.
Methods Mol Biol ; 1475: 41-54, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27631796

RESUMEN

One of the few proteins that have SUMO E3 ligase activity is the 358 kDa nucleoporin RanBP2 (Nup358). While small fragments of RanBP2 can stimulate SUMOylation in vitro, the physiologically relevant E3 ligase is a stable multi-subunit complex comprised of RanBP2, SUMOylated RanGAP1, and Ubc9. Here, we provide a detailed protocol to in vitro reconstitute the RanBP2 SUMO E3 ligase complex. With the exception of RanBP2, reconstitution involves untagged full-length proteins. We describe the bacterial expression and purification of all complex components, namely an 86 kDa His-tagged RanBP2 fragment, the SUMO E2-conjugating enzyme Ubc9, RanGAP1, and SUMO1, and we provide a protocol for quantitative SUMOylation of RanGAP1. Finally, we present details for the assembly and final purification of the catalytically active RanBP2/RanGAP1*SUMO1/Ubc9 complex.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Proteína SUMO-1/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Activadoras de GTPasa/genética , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Chaperonas Moleculares/genética , Proteínas de Complejo Poro Nuclear/genética , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína SUMO-1/genética , Sumoilación , Enzimas Ubiquitina-Conjugadoras/genética
7.
Nat Commun ; 7: 11482, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27160050

RESUMEN

Continuous cycles of nucleocytoplasmic transport require disassembly of transport receptor/Ran-GTP complexes in the cytoplasm. A basic disassembly mechanism in all eukaryotes depends on soluble RanGAP and RanBP1. In vertebrates, a significant fraction of RanGAP1 stably interacts with the nucleoporin RanBP2 at a binding site that is flanked by FG-repeats and Ran-binding domains, and overlaps with RanBP2's SUMO E3 ligase region. Here, we show that the RanBP2/RanGAP1*SUMO1/Ubc9 complex functions as an autonomous disassembly machine with a preference for the export receptor Crm1. We describe three in vitro reconstituted disassembly intermediates, which show binding of a Crm1 export complex via two FG-repeat patches, cargo-release by RanBP2's Ran-binding domains and retention of free Crm1 at RanBP2 after Ran-GTP hydrolysis. Intriguingly, all intermediates are compatible with SUMO E3 ligase activity, suggesting that the RanBP2/RanGAP1*SUMO1/Ubc9 complex may link Crm1- and SUMO-dependent functions.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Carioferinas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína SUMO-1/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Activadoras de GTPasa/química , Células HEK293 , Células HeLa , Humanos , Técnicas In Vitro , Carioferinas/química , Modelos Moleculares , Chaperonas Moleculares/química , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/química , Dominios y Motivos de Interacción de Proteínas , Receptores Citoplasmáticos y Nucleares/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Secuencias Repetitivas de Aminoácido , Proteína SUMO-1/química , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitina-Proteína Ligasas/química , Proteína Exportina 1
8.
Nat Protoc ; 9(4): 896-909, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24651501

RESUMEN

SUMOylation is a protein modification that regulates the function of hundreds of proteins. Detecting endogenous SUMOylation is challenging: most small ubiquitin-related modifier (SUMO) targets are low in abundance, and only a fraction of a protein's cellular pool is typically SUMOylated. Here we present a step-by-step protocol for the enrichment of endogenous SUMO targets from mammalian cells and tissues (specifically, mouse liver), based on the use of monoclonal antibodies that are available to the scientific community. The protocol comprises (i) production of antibodies and affinity matrix, (ii) denaturing cell lysis, and (iii) SUMO immunoprecipitation followed by peptide elution. Production of affinity matrix and cell lysis requires ∼1 d. The immunoprecipitation with peptide elution can be performed in 2 d. As SUMO proteins are conserved, this protocol should also be applicable to other organisms, including many vertebrates and Drosophila melanogaster.


Asunto(s)
Anticuerpos Monoclonales , Inmunoprecipitación/métodos , Sumoilación , Animales , Humanos , Hígado/metabolismo , Ratones , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitinas/metabolismo
9.
PLoS One ; 9(7): e101519, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24988324

RESUMEN

Differentiation and dedifferentiation, accompanied by proliferation play a pivotal role for the phenotypic development of vascular proliferative diseases (VPD), such as restenosis. Increasing evidence points to an essential role of regulated nucleoporin expression in the choice between differentiation and proliferation. However, whether components of the Ran GTPase cycle, which is of pivotal importance for both nucleocytoplasmic transport and for mitotic progression, are subject to similar regulation in VPD is currently unknown. Here, we show that differentiation of human coronary artery smooth muscle cell (CASMC) to a contractile phenotype by stepwise serum depletion leads to significant reduction of RanGAP1 protein levels. The inverse event, dedifferentiation of cells, was assessed in the rat carotid artery balloon injury model, a well-accepted model for neointima formation and restenosis. As revealed by temporospatial analysis of RanGAP1 expression, neointima formation in rat carotid arteries was associated with a significant upregulation of RanGAP1 expression at 3 and 7 days after balloon injury. Of note, neointimal cells located at the luminal surface revealed persistent RanGAP1 expression, as opposed to cells in deeper layers of the neointima where RanGAP1 expression was less or not detectable at all. To gain first evidence for a direct influence of RanGAP1 levels on differentiation, we reduced RanGAP1 in human coronary artery smooth muscle cells by siRNA. Indeed, downregulation of the essential RanGAP1 protein by 50% induced a differentiated, spindle-like smooth muscle cell phenotype, accompanied by an upregulation of the differentiation marker desmin. Reduction of RanGAP1 levels also resulted in a reduction of mitogen induced cellular migration and proliferation as well as a significant upregulation of the cyclin-dependent kinase inhibitor p27KIP1, without evidence for cellular necrosis. These findings suggest that RanGAP1 plays a critical role in smooth muscle cell differentiation, migration and proliferation in vitro and in vivo. Appropriate modulation of RanGAP1 expression may thus be a strategy to modulate VPD development such as restenosis.


Asunto(s)
Reestenosis Coronaria/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Miocitos del Músculo Liso/patología , Neointima/metabolismo , Lesiones del Sistema Vascular/metabolismo , Animales , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Reestenosis Coronaria/patología , Humanos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Neointima/patología , Ratas , Lesiones del Sistema Vascular/patología
10.
Nucleus ; 3(5): 429-32, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22925898

RESUMEN

Posttranslational modification of proteins with SUMO and the RanGTP/GDP cycle are two essential cellular mechanisms contributing directly or indirectly to almost every cellular event. The SUMO E3 ligase RanBP2 (Nup358) and the Ran GTPase activating protein (RanGAP1) are known to form a stable complex throughout the cell cycle suggesting a link between sumoylation of proteins and RanGTP hydrolysis. In a recent study we demonstrated that the stable complex of RanBP2, sumoylated RanGAP1 and Ubc9 (and not RanBP2 by itself) represents the physiologically relevant form of the SUMO ligase. Characterization of the interactions reveals an intricate proximity of two catalytic activities, sumoylation and RanGTP hydrolysis. In this ExtraView we summarize our results and discuss some ideas about a potential coupling of both processes.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteína SUMO-1/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Sitios de Unión , Humanos , Procesamiento Proteico-Postraduccional , Sumoilación
11.
Methods Mol Biol ; 832: 93-110, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22350878

RESUMEN

Reconstituting posttranslational modification with SUMO in vitro is an essential tool in the analysis of sumoylation. In this article, we provide detailed protocols that allow to set up and perform sumoylation reactions using a purified recombinant sumoylation machinery. The protocols include purification of the SUMO E1 enzyme His-Aos1/Uba2, untagged E2 enzyme Ubc9, untagged SUMO, and the RanBP2 E3 ligase fragment IR1 + M. Using these components, we provide step-by-step instructions to set up sumoylation reactions. Two established SUMO model substrates, His-RanGAPtail and HisYFP-Sp100, complement the described tool box; these proteins serve as positive controls in E3 ligase-independent and -dependent sumoylation reactions and are valuable instruments to adjust the reaction conditions if necessary.


Asunto(s)
Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
12.
Mol Biol Cell ; 19(5): 2300-10, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18305100

RESUMEN

In vertebrate cells, the nucleoporin Nup358/RanBP2 is a major component of the filaments that emanate from the nuclear pore complex into the cytoplasm. Nup358 forms a complex with SUMOylated RanGAP1, the GTPase activating protein for Ran. RanGAP1 plays a pivotal role in the establishment of a RanGTP gradient across the nuclear envelope and, hence, in the majority of nucleocytoplasmic transport pathways. Here, we investigate the roles of the Nup358-RanGAP1 complex and of soluble RanGAP1 in nuclear protein transport, combining in vivo and in vitro approaches. Depletion of Nup358 by RNA interference led to a clear reduction of importin alpha/beta-dependent nuclear import of various reporter proteins. In vitro, transport could be partially restored by the addition of importin beta, RanBP1, and/or RanGAP1 to the transport reaction. In intact Nup358-depleted cells, overexpression of importin beta strongly stimulated nuclear import, demonstrating that the transport receptor is the most rate-limiting factor at reduced Nup358-concentrations. As an alternative approach, we used antibody-inhibition experiments. Antibodies against RanGAP1 inhibited the enzymatic activity of soluble and nuclear pore-associated RanGAP1, as well as nuclear import and export. Although export could be fully restored by soluble RanGAP, import was only partially rescued. Together, these data suggest a dual function of the Nup358-RanGAP1 complex as a coordinator of importin beta recycling and reformation of novel import complexes.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Especificidad de Anticuerpos , Supervivencia Celular , Células HeLa , Humanos , Ratones , Modelos Biológicos , Señales de Localización Nuclear/metabolismo , Poro Nuclear , Proteínas de Complejo Poro Nuclear/deficiencia , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Solubilidad
13.
J Mol Microbiol Biotechnol ; 4(3): 229-33, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11931552

RESUMEN

NtrB is the bifunctional histidine kinase for nitrogen regulation. Dependent on the availability of nitrogen, it either autophosphorylates and serves as the phosphodonor for its cognate response regulator, NtrC, or, it promotes the rapid dephosphorylation of NtrC-P. The activity of NtrB depends on the interaction of two subdomains within its transmitter domain, the H-domain and the kinase domain. Both phosphotransfer activity and phosphatase activity reside in the H-domain. When separately expressed, this domain acts as a phosphatase. Interaction with the kinase domain results in the inhibition of the phosphatase activity and the phosphorylation of the conserved histidine of the H-domain.


Asunto(s)
Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Quinasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Nitrógeno/metabolismo , Fosfoproteínas Fosfatasas/genética , Proteínas Quinasas/genética
14.
J Biol Chem ; 279(45): 47391-401, 2004 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-15322134

RESUMEN

Scaffold proteins play pivotal roles during signal transduction. In Saccharomyces cerevisiae, the Ste5p scaffold protein is required for activation of the mating MAPK cascade in response to mating pheromone and assembles a G protein-MAPK cascade complex at the plasma membrane. To serve this function, Ste5p undergoes a regulated localization event involving nuclear shuttling and recruitment to the cell cortex. Here, we show that Ste5p is also subject to two types of phosphorylation and increases in abundance as a result of MAPK activation. During vegetative growth, Ste5p is basally phosphorylated through a process regulated by the CDK Cdc28p. During mating pheromone signaling, Ste5p undergoes increased phosphorylation by the mating MAPK cascade. Multiple kinases of the mating MAPK cascade contribute to pheromone-induced phosphorylation of Ste5p, with the mating MAPKs contributing the most. Pheromone induction or overexpression of the Ste4p Gbeta subunit increases the abundance of Ste5p at a post-translational step, as long as the mating MAPKs are present. Increasing the level of MAPK activation increases the amount of Ste5p at the cell cortex. Analysis of Ste5p localization mutants reveals a strict requirement for Ste5p recruitment to the plasma membrane for the pheromone-induced phosphorylation. These results suggest that the pool of Ste5p that is recruited to the plasma membrane selectively undergoes feedback phosphorylation by the associated MAPKs, leading to an increased pool of Ste5p at the site of polarized growth. These findings provide evidence of a spatially regulated mechanism for post-activation control of a signaling scaffold that potentiates pathway activation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Sistema de Señalización de MAP Quinasas , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Northern Blotting , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Activación Enzimática , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Genes Reporteros , Glutatión Transferasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Feromonas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Plásmidos/metabolismo , Procesamiento Proteico-Postraduccional , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA