Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 172(1-2): 218-233.e17, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29249357

RESUMEN

Signaling pathways that promote adipose tissue thermogenesis are well characterized, but the limiters of energy expenditure are largely unknown. Here, we show that ablation of the anti-inflammatory cytokine IL-10 improves insulin sensitivity, protects against diet-induced obesity, and elicits the browning of white adipose tissue. Mechanistic studies define bone marrow cells as the source of the IL-10 signal and adipocytes as the target cell type mediating these effects. IL-10 receptor alpha is highly enriched in mature adipocytes and is induced in response to differentiation, obesity, and aging. Assay for transposase-accessible chromatin sequencing (ATAC-seq), ChIP-seq, and RNA-seq reveal that IL-10 represses the transcription of thermogenic genes in adipocytes by altering chromatin accessibility and inhibiting ATF and C/EBPß recruitment to key enhancer regions. These findings expand our understanding of the relationship between inflammatory signaling pathways and adipose tissue function and provide insight into the physiological control of thermogenesis that could inform future therapy.


Asunto(s)
Adipocitos/metabolismo , Ensamble y Desensamble de Cromatina , Metabolismo Energético , Interleucina-10/metabolismo , Termogénesis , Factores de Transcripción Activadores/metabolismo , Animales , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Línea Celular , Células Cultivadas , Interleucina-10/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 121(27): e2406946121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917015

RESUMEN

Progerin, the protein that causes Hutchinson-Gilford progeria syndrome, triggers nuclear membrane (NM) ruptures and blebs, but the mechanisms are unclear. We suspected that the expression of progerin changes the overall structure of the nuclear lamina. High-resolution microscopy of smooth muscle cells (SMCs) revealed that lamin A and lamin B1 form independent meshworks with uniformly spaced openings (~0.085 µm2). The expression of progerin in SMCs resulted in the formation of an irregular meshwork with clusters of large openings (up to 1.4 µm2). The expression of progerin acted in a dominant-negative fashion to disrupt the morphology of the endogenous lamin B1 meshwork, triggering irregularities and large openings that closely resembled the irregularities and openings in the progerin meshwork. These abnormal meshworks were strongly associated with NM ruptures and blebs. Of note, the progerin meshwork was markedly abnormal in nuclear blebs that were deficient in lamin B1 (~50% of all blebs). That observation suggested that higher levels of lamin B1 expression might normalize the progerin meshwork and prevent NM ruptures and blebs. Indeed, increased lamin B1 expression reversed the morphological abnormalities in the progerin meshwork and markedly reduced the frequency of NM ruptures and blebs. Thus, progerin expression disrupts the overall structure of the nuclear lamina, but that effect-along with NM ruptures and blebs-can be abrogated by increased lamin B1 expression.


Asunto(s)
Lamina Tipo A , Lamina Tipo B , Lámina Nuclear , Lámina Nuclear/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Lamina Tipo B/metabolismo , Lamina Tipo B/genética , Humanos , Progeria/metabolismo , Progeria/genética , Progeria/patología , Animales , Precursores de Proteínas/metabolismo , Precursores de Proteínas/genética , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones
3.
Proc Natl Acad Sci U S A ; 120(8): e2219833120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36787365

RESUMEN

Lipoprotein lipase (LPL) is secreted into the interstitial spaces by parenchymal cells and then transported into capillaries by GPIHBP1. LPL carries out the lipolytic processing of triglyceride (TG)-rich lipoproteins (TRLs), but the tissue-specific regulation of LPL is incompletely understood. Plasma levels of TG hydrolase activity after heparin injection are often used to draw inferences about intravascular LPL levels, but the validity of these inferences is unclear. Moreover, plasma TG hydrolase activity levels are not helpful for understanding LPL regulation in specific tissues. Here, we sought to elucidate LPL regulation under thermoneutral conditions (30 °C). To pursue this objective, we developed an antibody-based method to quantify (in a direct fashion) LPL levels inside capillaries. At 30 °C, intracapillary LPL levels fell sharply in brown adipose tissue (BAT) but not heart. The reduced intracapillary LPL levels were accompanied by reduced margination of TRLs along capillaries. ANGPTL4 expression in BAT increased fourfold at 30 °C, suggesting a potential explanation for the lower intracapillary LPL levels. Consistent with that idea, Angptl4 deficiency normalized both LPL levels and TRL margination in BAT at 30 °C. In Gpihbp1-/- mice housed at 30 °C, we observed an ANGPTL4-dependent decrease in LPL levels within the interstitial spaces of BAT, providing in vivo proof that ANGPTL4 regulates LPL levels before LPL transport into capillaries. In conclusion, our studies have illuminated intracapillary LPL regulation under thermoneutral conditions. Our approaches will be useful for defining the impact of genetic variation and metabolic disease on intracapillary LPL levels and TRL processing.


Asunto(s)
Tejido Adiposo Pardo , Receptores de Lipoproteína , Animales , Ratones , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Anticuerpos/metabolismo , Lipoproteína Lipasa/metabolismo , Receptores de Lipoproteína/metabolismo , Temperatura , Triglicéridos/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(44): e2313825120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871217

RESUMEN

Lipoprotein lipase (LPL), the enzyme that carries out the lipolytic processing of triglyceride-rich lipoproteins (TRLs), is synthesized by adipocytes and myocytes and secreted into the interstitial spaces. The LPL is then bound by GPIHBP1, a GPI-anchored protein of endothelial cells (ECs), and transported across ECs to the capillary lumen. The assumption has been that the LPL that is moved into capillaries remains attached to GPIHBP1 and that GPIHBP1 serves as a platform for TRL processing. In the current studies, we examined the validity of that assumption. We found that an LPL-specific monoclonal antibody (mAb), 88B8, which lacks the ability to detect GPIHBP1-bound LPL, binds avidly to LPL within capillaries. We further demonstrated, by confocal microscopy, immunogold electron microscopy, and nanoscale secondary ion mass spectrometry analyses, that the LPL detected by mAb 88B8 is located within the EC glycocalyx, distant from the GPIHBP1 on the EC plasma membrane. The LPL within the glycocalyx mediates the margination of TRLs along capillaries and is active in TRL processing, resulting in the delivery of lipoprotein-derived lipids to immediately adjacent parenchymal cells. Thus, the LPL that GPIHBP1 transports into capillaries can detach and move into the EC glycocalyx, where it functions in the intravascular processing of TRLs.


Asunto(s)
Lipoproteína Lipasa , Receptores de Lipoproteína , Anticuerpos Monoclonales/metabolismo , Capilares/metabolismo , Células Endoteliales/metabolismo , Glicocálix/metabolismo , Lipoproteína Lipasa/metabolismo , Lipoproteínas/metabolismo , Receptores de Lipoproteína/metabolismo , Triglicéridos/metabolismo , Humanos , Animales
5.
Proc Natl Acad Sci U S A ; 119(36): e2211136119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037340

RESUMEN

GPIHBP1, a protein of capillary endothelial cells (ECs), is a crucial partner for lipoprotein lipase (LPL) in the lipolytic processing of triglyceride-rich lipoproteins. GPIHBP1, which contains a three-fingered cysteine-rich LU (Ly6/uPAR) domain and an intrinsically disordered acidic domain (AD), captures LPL from within the interstitial spaces (where it is secreted by parenchymal cells) and shuttles it across ECs to the capillary lumen. Without GPIHBP1, LPL remains stranded within the interstitial spaces, causing severe hypertriglyceridemia (chylomicronemia). Biophysical studies revealed that GPIHBP1 stabilizes LPL structure and preserves LPL activity. That discovery was the key to crystallizing the GPIHBP1-LPL complex. The crystal structure revealed that GPIHBP1's LU domain binds, largely by hydrophobic contacts, to LPL's C-terminal lipid-binding domain and that the AD is positioned to project across and interact, by electrostatic forces, with a large basic patch spanning LPL's lipid-binding and catalytic domains. We uncovered three functions for GPIHBP1's AD. First, it accelerates the kinetics of LPL binding. Second, it preserves LPL activity by inhibiting unfolding of LPL's catalytic domain. Third, by sheathing LPL's basic patch, the AD makes it possible for LPL to move across ECs to the capillary lumen. Without the AD, GPIHBP1-bound LPL is trapped by persistent interactions between LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the abluminal surface of ECs. The AD interrupts the HSPG interactions, freeing LPL-GPIHBP1 complexes to move across ECs to the capillary lumen. GPIHBP1 is medically important; GPIHBP1 mutations cause lifelong chylomicronemia, and GPIHBP1 autoantibodies cause some acquired cases of chylomicronemia.


Asunto(s)
Hipertrigliceridemia , Receptores de Lipoproteína , Triglicéridos , Células Endoteliales/metabolismo , Humanos , Hipertrigliceridemia/metabolismo , Lipoproteína Lipasa/metabolismo , Unión Proteica , Receptores de Lipoproteína/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161290

RESUMEN

Defects or deficiencies in nuclear lamins cause pathology in many cell types, and recent studies have implicated nuclear membrane (NM) ruptures as a cause of cell toxicity. We previously observed NM ruptures and progressive cell death in the developing brain of lamin B1-deficient mouse embryos. We also observed frequent NM ruptures and DNA damage in nuclear lamin-deficient fibroblasts. Factors modulating susceptibility to NM ruptures remain unclear, but we noted low levels of LAP2ß, a chromatin-binding inner NM protein, in fibroblasts with NM ruptures. Here, we explored the apparent link between LAP2ß and NM ruptures in nuclear lamin-deficient neurons and fibroblasts, and we tested whether manipulating LAP2ß expression levels would alter NM rupture frequency. In cortical plate neurons of lamin B1-deficient embryos, we observed a strong correlation between low LAP2ß levels and NM ruptures. We also found low LAP2ß levels and frequent NM ruptures in neurons of cultured Lmnb1-/- neurospheres. Reducing LAP2ß expression in Lmnb1-/- neurons with an siRNA markedly increased the NM rupture frequency (without affecting NM rupture duration), whereas increased LAP2ß expression eliminated NM ruptures and reduced DNA damage. Consistent findings were observed in nuclear lamin-deficient fibroblasts. Reduced LAP2ß expression increased NM ruptures, whereas increased LAP2ß expression virtually abolished NM ruptures. Increased LAP2ß expression nearly abolished NM ruptures in cells subjected to mechanical stress (an intervention that increases NM ruptures). Our studies showed that increasing LAP2ß expression bolsters NM integrity in nuclear lamin-deficient cells and markedly reduces NM rupture frequency.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Fibroblastos/metabolismo , Lamina Tipo B/deficiencia , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Membrana Nuclear/metabolismo , Animales , Muerte Celular , Diferenciación Celular , Corteza Cerebral/patología , Daño del ADN , Embrión de Mamíferos/metabolismo , Lamina Tipo A/deficiencia , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Ratones Noqueados , Especificidad de Órganos
7.
Nucleic Acids Res ; 49(1): 1-14, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33275144

RESUMEN

Nucleic acid therapeutics (NATs) have proven useful in promoting the degradation of specific transcripts, modifying gene expression, and regulating mRNA splicing. In each situation, efficient delivery of nucleic acids to cells, tissues and intracellular compartments is crucial-both for optimizing efficacy and reducing side effects. Despite successes in NATs, our understanding of their cellular uptake and distribution in tissues is limited. Current methods have yielded insights into distribution of NATs within cells and tissues, but the sensitivity and resolution of these approaches are limited. Here, we show that nanoscale secondary ion mass spectrometry (NanoSIMS) imaging can be used to define the distribution of 5-bromo-2'-deoxythymidine (5-BrdT) modified antisense oligonucleotides (ASO) in cells and tissues with high sensitivity and spatial resolution. This approach makes it possible to define ASO uptake and distribution in different subcellular compartments and to quantify the impact of targeting ligands designed to promote ASO uptake by cells. Our studies showed that phosphorothioate ASOs are associated with filopodia and the inner nuclear membrane in cultured cells, and also revealed substantial cellular and subcellular heterogeneity of ASO uptake in mouse tissues. NanoSIMS imaging represents a significant advance in visualizing uptake and distribution of NATs; this approach will be useful in optimizing efficacy and delivery of NATs for treating human disease.


Asunto(s)
Oligonucleótidos Antisentido/análisis , Oligonucleótidos Fosforotioatos/análisis , Espectrometría de Masa de Ion Secundario/métodos , Células 3T3-L1 , Acetilgalactosamina/administración & dosificación , Acetilgalactosamina/análisis , Animales , Receptor de Asialoglicoproteína/análisis , Cesio , Células HEK293 , Células HeLa , Humanos , Riñón/química , Riñón/ultraestructura , Hígado/química , Hígado/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Miocardio/química , Miocardio/ultraestructura , Oligonucleótidos Antisentido/farmacocinética , Oligonucleótidos Fosforotioatos/farmacocinética , Seudópodos/química , Seudópodos/ultraestructura , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , Fracciones Subcelulares/química , Azufre/análisis , Isótopos de Azufre/análisis , Distribución Tisular
8.
Proc Natl Acad Sci U S A ; 117(19): 10476-10483, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32354992

RESUMEN

Cholesterol-laden macrophage foam cells are a hallmark of atherosclerosis. For that reason, cholesterol metabolism in macrophages has attracted considerable scrutiny, particularly the mechanisms by which macrophages unload surplus cholesterol (a process referred to as "cholesterol efflux"). Many studies of cholesterol efflux in macrophages have focused on the role of ABC transporters in moving cholesterol onto high-density lipoproteins (HDLs), but other mechanisms for cholesterol efflux likely exist. We hypothesized that macrophages have the capacity to unload cholesterol directly onto adjacent cells. To test this hypothesis, we used methyl-ß-cyclodextrin (MßCD) to load mouse peritoneal macrophages with [13C]cholesterol. We then plated the macrophages (in the absence of serum or HDL) onto smooth muscle cells (SMCs) that had been metabolically labeled with [15N]choline. After incubating the cells overnight in the absence of HDL or serum, we visualized 13C and 15N distribution by nanoscale secondary ion mass spectrometry (NanoSIMS). We observed substantial 13C enrichment in SMCs that were adjacent to [13C]cholesterol-loaded macrophages-including in cytosolic lipid droplets of SMCs. In follow-up studies, we depleted "accessible cholesterol" from the plasma membrane of [13C]cholesterol-loaded macrophages with MßCD before plating the macrophages onto the SMCs. After an overnight incubation, we again observed substantial 13C enrichment in the SMCs adjacent to macrophages. Thus, macrophages transfer cholesterol to adjacent cells in the absence of serum or HDL. We suspect that macrophages within tissues transfer cholesterol to adjacent cells, thereby contributing to the ability to unload surplus cholesterol.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Transportador 1 de Casete de Unión a ATP/fisiología , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Aterosclerosis/metabolismo , Aterosclerosis/fisiopatología , Transporte Biológico , Células Espumosas/metabolismo , Metabolismo de los Lípidos , Lipoproteínas HDL/metabolismo , Macrófagos/fisiología , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Suero/metabolismo , beta-Ciclodextrinas/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(27): 15827-15836, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571911

RESUMEN

Bromine and peroxidasin (an extracellular peroxidase) are essential for generating sulfilimine cross-links between a methionine and a hydroxylysine within collagen IV, a basement membrane protein. The sulfilimine cross-links increase the structural integrity of basement membranes. The formation of sulfilimine cross-links depends on the ability of peroxidasin to use bromide and hydrogen peroxide substrates to produce hypobromous acid (HOBr). Once a sulfilimine cross-link is created, bromide is released into the extracellular space and becomes available for reutilization. Whether the HOBr generated by peroxidasin is used very selectively for creating sulfilimine cross-links or whether it also causes oxidative damage to bystander molecules (e.g., generating bromotyrosine residues in basement membrane proteins) is unclear. To examine this issue, we used nanoscale secondary ion mass spectrometry (NanoSIMS) imaging to define the distribution of bromine in mammalian tissues. We observed striking enrichment of bromine (79Br, 81Br) in basement membranes of normal human and mouse kidneys. In peroxidasin knockout mice, bromine enrichment of basement membranes of kidneys was reduced by ∼85%. Proteomic studies revealed bromination of tyrosine-1485 in the NC1 domain of α2 collagen IV from kidneys of wild-type mice; the same tyrosine was brominated in collagen IV from human kidney. Bromination of tyrosine-1485 was reduced by >90% in kidneys of peroxidasin knockout mice. Thus, in addition to promoting sulfilimine cross-links in collagen IV, peroxidasin can also brominate a bystander tyrosine. Also, the fact that bromine enrichment is largely confined to basement membranes implies that peroxidasin activity is largely restricted to basement membranes in mammalian tissues.


Asunto(s)
Membrana Basal/metabolismo , Bromo/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Peroxidasa/metabolismo , Animales , Biopsia , Bromatos/metabolismo , Bromuros , Células Cultivadas , Colágeno Tipo IV/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Iminas/metabolismo , Riñón/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteómica , Peroxidasina
10.
Proc Natl Acad Sci U S A ; 116(51): 25870-25879, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31796586

RESUMEN

Deficiencies in either lamin B1 or lamin B2 cause both defective migration of cortical neurons in the developing brain and reduced neuronal survival. The neuronal migration abnormality is explained by a weakened nuclear lamina that interferes with nucleokinesis, a nuclear translocation process required for neuronal migration. In contrast, the explanation for impaired neuronal survival is poorly understood. We hypothesized that the forces imparted on the nucleus during neuronal migration result in nuclear membrane (NM) ruptures, causing interspersion of nuclear and cytoplasmic contents-and ultimately cell death. To test this hypothesis, we bred Lmnb1-deficient mice that express a nuclear-localized fluorescent Cre reporter. Migrating neurons within the cortical plate of E18.5 Lmnb1-deficient embryos exhibited NM ruptures, evident by the escape of the nuclear-localized reporter into the cytoplasm and NM discontinuities by electron microscopy. The NM ruptures were accompanied by DNA damage and cell death. The NM ruptures were not observed in nonmigrating cells within the ventricular zone. NM ruptures, DNA damage, and cell death were also observed in cultured Lmnb1-/- and Lmnb2-/- neurons as they migrated away from neurospheres. To test whether mechanical forces on the cell nucleus are relevant to NM ruptures in migrating neurons, we examined cultured Lmnb1-/- neurons when exposed to external constrictive forces (migration into a field of tightly spaced silicon pillars). As the cells entered the field of pillars, there were frequent NM ruptures, accompanied by DNA damage and cell death.


Asunto(s)
Muerte Celular/fisiología , Movimiento Celular/fisiología , Lamina Tipo B/metabolismo , Neuronas/metabolismo , Membrana Nuclear/metabolismo , Lámina Nuclear/metabolismo , Animales , Línea Celular , Supervivencia Celular , Citoplasma/metabolismo , Daño del ADN , Regulación de la Expresión Génica , Lamina Tipo B/genética , Ratones , Ratones Noqueados , Neuronas/citología , Lámina Nuclear/genética
11.
Proc Natl Acad Sci U S A ; 116(5): 1723-1732, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30559189

RESUMEN

Lipoprotein lipase (LPL) is responsible for the intravascular processing of triglyceride-rich lipoproteins. The LPL within capillaries is bound to GPIHBP1, an endothelial cell protein with a three-fingered LU domain and an N-terminal intrinsically disordered acidic domain. Loss-of-function mutations in LPL or GPIHBP1 cause severe hypertriglyceridemia (chylomicronemia), but structures for LPL and GPIHBP1 have remained elusive. Inspired by our recent discovery that GPIHBP1's acidic domain preserves LPL structure and activity, we crystallized an LPL-GPIHBP1 complex and solved its structure. GPIHBP1's LU domain binds to LPL's C-terminal domain, largely by hydrophobic interactions. Analysis of electrostatic surfaces revealed that LPL contains a large basic patch spanning its N- and C-terminal domains. GPIHBP1's acidic domain was not defined in the electron density map but was positioned to interact with LPL's large basic patch, providing a likely explanation for how GPIHBP1 stabilizes LPL. The LPL-GPIHBP1 structure provides insights into mutations causing chylomicronemia.


Asunto(s)
Lipoproteína Lipasa/metabolismo , Plasma/metabolismo , Receptores de Lipoproteína/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismo , Animales , Células CHO , Capilares/metabolismo , Línea Celular , Cricetulus , Cristalografía por Rayos X/métodos , Células Endoteliales/metabolismo , Humanos , Hidrólisis , Hipertrigliceridemia/metabolismo
12.
Proc Natl Acad Sci U S A ; 116(13): 6319-6328, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850549

RESUMEN

Lipoprotein lipase (LPL), the enzyme that hydrolyzes triglycerides in plasma lipoproteins, is assumed to be active only as a homodimer. In support of this idea, several groups have reported that the size of LPL, as measured by density gradient ultracentrifugation, is ∼110 kDa, twice the size of LPL monomers (∼55 kDa). Of note, however, in those studies the LPL had been incubated with heparin, a polyanionic substance that binds and stabilizes LPL. Here we revisited the assumption that LPL is active only as a homodimer. When freshly secreted human LPL (or purified preparations of LPL) was subjected to density gradient ultracentrifugation (in the absence of heparin), LPL mass and activity peaks exhibited the size expected of monomers (near the 66-kDa albumin standard). GPIHBP1-bound LPL also exhibited the size expected for a monomer. In the presence of heparin, LPL size increased, overlapping with a 97.2-kDa standard. We also used density gradient ultracentrifugation to characterize the LPL within the high-salt and low-salt peaks from a heparin-Sepharose column. The catalytically active LPL within the high-salt peak exhibited the size of monomers, whereas most of the inactive LPL in the low-salt peak was at the bottom of the tube (in aggregates). Consistent with those findings, the LPL in the low-salt peak, but not that in the high-salt peak, was easily detectable with single mAb sandwich ELISAs, in which LPL is captured and detected with the same antibody. We conclude that catalytically active LPL can exist in a monomeric state.


Asunto(s)
Lipoproteína Lipasa/química , Lipoproteína Lipasa/aislamiento & purificación , Animales , Células CHO , Bovinos , Centrifugación por Gradiente de Densidad/métodos , Cromatografía de Afinidad , Cromatografía en Agarosa , Cricetulus , Epítopos , Heparina , Humanos , Lipoproteína Lipasa/sangre , Receptores de Lipoproteína/sangre , Receptores de Lipoproteína/química , Receptores de Lipoproteína/aislamiento & purificación , Sefarosa/análogos & derivados , Triglicéridos/metabolismo , Ultracentrifugación
13.
Proc Natl Acad Sci U S A ; 115(40): 10100-10105, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30224463

RESUMEN

The nuclear lamina, an intermediate filament meshwork lining the inner nuclear membrane, is formed by the nuclear lamins (lamins A, C, B1, and B2). Defects or deficiencies in individual nuclear lamin proteins have been reported to elicit nuclear blebs (protrusions or outpouchings of the nuclear envelope) and increase susceptibility for nuclear membrane ruptures. It is unclear, however, how a complete absence of nuclear lamins would affect nuclear envelope morphology and nuclear membrane integrity (i.e., whether nuclear membrane blebs or protrusions would occur and, if not, whether cells would be susceptible to nuclear membrane ruptures). To address these issues, we generated mouse embryonic fibroblasts (MEFs) lacking all nuclear lamins. The nuclear lamin-deficient MEFs had irregular nuclear shapes but no nuclear blebs or protrusions. Despite a virtual absence of nuclear blebs, MEFs lacking nuclear lamins had frequent, prolonged, and occasionally nonhealing nuclear membrane ruptures. By transmission electron microscopy, the inner nuclear membrane in nuclear lamin-deficient MEFs have a "wavy" appearance, and there were discrete discontinuities in the inner and outer nuclear membranes. Nuclear membrane ruptures were accompanied by a large increase in DNA damage, as judged by γ-H2AX foci. Mechanical stress increased both nuclear membrane ruptures and DNA damage, whereas minimizing transmission of cytoskeletal forces to the nucleus had the opposite effects.


Asunto(s)
Daño del ADN , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Laminas/deficiencia , Membrana Nuclear/metabolismo , Estrés Mecánico , Animales , Embrión de Mamíferos/ultraestructura , Fibroblastos/ultraestructura , Ratones , Ratones Noqueados , Membrana Nuclear/genética , Membrana Nuclear/ultraestructura
14.
Proc Natl Acad Sci U S A ; 115(36): E8499-E8508, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30127022

RESUMEN

Macrophages are generally assumed to unload surplus cholesterol through direct interactions between ABC transporters on the plasma membrane and HDLs, but they have also been reported to release cholesterol-containing particles. How macrophage-derived particles are formed and released has not been clear. To understand the genesis of macrophage-derived particles, we imaged mouse macrophages by EM and nanoscale secondary ion mass spectrometry (nanoSIMS). By scanning EM, we found that large numbers of 20- to 120-nm particles are released from the fingerlike projections (filopodia) of macrophages. These particles attach to the substrate, forming a "lawn" of particles surrounding macrophages. By nanoSIMS imaging we showed that these particles are enriched in the mobile and metabolically active accessible pool of cholesterol (detectable by ALO-D4, a modified version of a cholesterol-binding cytolysin). The cholesterol content of macrophage-derived particles was increased by loading the cells with cholesterol or by adding LXR and RXR agonists to the cell-culture medium. Incubating macrophages with HDL reduced the cholesterol content of macrophage-derived particles. We propose that release of accessible cholesterol-rich particles from the macrophage plasma membrane could assist in disposing of surplus cholesterol and increase the efficiency of cholesterol movement to HDL.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Animales , Micropartículas Derivadas de Células/ultraestructura , Lipoproteínas HDL/ultraestructura , Macrófagos/ultraestructura , Ratones , Ratones Noqueados , Microscopía Electrónica , Células RAW 264.7 , Espectrometría de Masa de Ion Secundario
15.
Proc Natl Acad Sci U S A ; 115(26): E6020-E6029, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29899144

RESUMEN

The intravascular processing of triglyceride-rich lipoproteins depends on lipoprotein lipase (LPL) and GPIHBP1, a membrane protein of endothelial cells that binds LPL within the subendothelial spaces and shuttles it to the capillary lumen. In the absence of GPIHBP1, LPL remains mislocalized within the subendothelial spaces, causing severe hypertriglyceridemia (chylomicronemia). The N-terminal domain of GPIHBP1, an intrinsically disordered region (IDR) rich in acidic residues, is important for stabilizing LPL's catalytic domain against spontaneous and ANGPTL4-catalyzed unfolding. Here, we define several important properties of GPIHBP1's IDR. First, a conserved tyrosine in the middle of the IDR is posttranslationally modified by O-sulfation; this modification increases both the affinity of GPIHBP1-LPL interactions and the ability of GPIHBP1 to protect LPL against ANGPTL4-catalyzed unfolding. Second, the acidic IDR of GPIHBP1 increases the probability of a GPIHBP1-LPL encounter via electrostatic steering, increasing the association rate constant (kon) for LPL binding by >250-fold. Third, we show that LPL accumulates near capillary endothelial cells even in the absence of GPIHBP1. In wild-type mice, we expect that the accumulation of LPL in close proximity to capillaries would increase interactions with GPIHBP1. Fourth, we found that GPIHBP1's IDR is not a key factor in the pathogenicity of chylomicronemia in patients with the GPIHBP1 autoimmune syndrome. Finally, based on biophysical studies, we propose that the negatively charged IDR of GPIHBP1 traverses a vast space, facilitating capture of LPL by capillary endothelial cells and simultaneously contributing to GPIHBP1's ability to preserve LPL structure and activity.


Asunto(s)
Células Endoteliales/metabolismo , Lipoproteína Lipasa/metabolismo , Receptores de Lipoproteína/metabolismo , Proteína 4 Similar a la Angiopoyetina/química , Proteína 4 Similar a la Angiopoyetina/genética , Proteína 4 Similar a la Angiopoyetina/metabolismo , Animales , Células Endoteliales/patología , Humanos , Hiperlipoproteinemia Tipo I/genética , Hiperlipoproteinemia Tipo I/metabolismo , Hiperlipoproteinemia Tipo I/patología , Lipoproteína Lipasa/química , Lipoproteína Lipasa/genética , Ratones , Unión Proteica , Dominios Proteicos , Receptores de Lipoproteína/química , Receptores de Lipoproteína/genética , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
16.
J Lipid Res ; 61(11): 1365-1376, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32948662

RESUMEN

Some cases of chylomicronemia are caused by autoantibodies against glycosylphosphatidylinositol-anchored HDL binding protein 1 (GPIHBP1), an endothelial cell protein that shuttles LPL to the capillary lumen. GPIHBP1 autoantibodies prevent binding and transport of LPL by GPIHBP1, thereby disrupting the lipolytic processing of triglyceride-rich lipoproteins. Here, we review the "GPIHBP1 autoantibody syndrome" and summarize clinical and laboratory findings in 22 patients. All patients had GPIHBP1 autoantibodies and chylomicronemia, but we did not find a correlation between triglyceride levels and autoantibody levels. Many of the patients had a history of pancreatitis, and most had clinical and/or serological evidence of autoimmune disease. IgA autoantibodies were present in all patients, and IgG4 autoantibodies were present in 19 of 22 patients. Patients with GPIHBP1 autoantibodies had low plasma LPL levels, consistent with impaired delivery of LPL into capillaries. Plasma levels of GPIHBP1, measured with a monoclonal antibody-based ELISA, were very low in 17 patients, reflecting the inability of the ELISA to detect GPIHBP1 in the presence of autoantibodies (immunoassay interference). However, GPIHBP1 levels were very high in five patients, indicating little capacity of their autoantibodies to interfere with the ELISA. Recently, several GPIHBP1 autoantibody syndrome patients were treated successfully with rituximab, resulting in the disappearance of GPIHBP1 autoantibodies and normalization of both plasma triglyceride and LPL levels. The GPIHBP1 autoantibody syndrome should be considered in any patient with newly acquired and unexplained chylomicronemia.


Asunto(s)
Autoanticuerpos/inmunología , Hipertrigliceridemia/inmunología , Receptores de Lipoproteína/inmunología , Humanos
17.
J Lipid Res ; 61(10): 1347-1359, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32690595

RESUMEN

For three decades, the LPL-specific monoclonal antibody 5D2 has been used to investigate LPL structure/function and intravascular lipolysis. 5D2 has been used to measure LPL levels, block the triglyceride hydrolase activity of LPL, and prevent the propensity of concentrated LPL preparations to form homodimers. Two early studies on the location of the 5D2 epitope reached conflicting conclusions, but the more convincing report suggested that 5D2 binds to a tryptophan (Trp)-rich loop in the carboxyl terminus of LPL. The same loop had been implicated in lipoprotein binding. Using surface plasmon resonance, we showed that 5D2 binds with high affinity to a synthetic LPL peptide containing the Trp-rich loop of human (but not mouse) LPL. We also showed, by both fluorescence and UV resonance Raman spectroscopy, that the Trp-rich loop binds lipids. Finally, we used X-ray crystallography to solve the structure of the Trp-rich peptide bound to a 5D2 Fab fragment. The Trp-rich peptide contains a short α-helix, with two Trps projecting into the antigen recognition site. A proline substitution in the α-helix, found in mouse LPL, is expected to interfere with several hydrogen bonds, explaining why 5D2 cannot bind to mouse LPL.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Lipoproteína Lipasa/química , Lipoproteína Lipasa/inmunología , Animales , Sitios de Unión , Humanos , Ratones , Triptófano
18.
J Lipid Res ; 61(3): 413-421, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31941672

RESUMEN

Zinc metallopeptidase STE24 (ZMPSTE24) is essential for the conversion of farnesyl-prelamin A to mature lamin A, a key component of the nuclear lamina. In the absence of ZMPSTE24, farnesyl-prelamin A accumulates in the nucleus and exerts toxicity, causing a variety of disease phenotypes. By ∼4 months of age, both male and female Zmpste24-/- mice manifest a near-complete loss of adipose tissue, but it has never been clear whether this phenotype is a direct consequence of farnesyl-prelamin A toxicity in adipocytes. To address this question, we generated a conditional knockout Zmpste24 allele and used it to create adipocyte-specific Zmpste24-knockout mice. To boost farnesyl-prelamin A levels, we bred in the "prelamin A-only" Lmna allele. Gene expression, immunoblotting, and immunohistochemistry experiments revealed that adipose tissue in these mice had decreased Zmpste24 expression along with strikingly increased accumulation of prelamin A. In male mice, Zmpste24 deficiency in adipocytes was accompanied by modest changes in adipose stores (an 11% decrease in body weight, a 23% decrease in body fat mass, and significantly smaller gonadal and inguinal white adipose depots). No changes in adipose stores were detected in female mice, likely because prelamin A expression in adipose tissue is lower in female mice. Zmpste24 deficiency in adipocytes did not alter the number of macrophages in adipose tissue, nor did it alter plasma levels of glucose, triglycerides, or fatty acids. We conclude that ZMPSTE24 deficiency in adipocytes, and the accompanying accumulation of farnesyl-prelamin A, reduces adipose tissue stores, but only modestly and only in male mice.


Asunto(s)
Tejido Adiposo/metabolismo , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Tejido Adiposo/química , Alelos , Animales , Núcleo Celular/química , Núcleo Celular/metabolismo , Femenino , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Metaloendopeptidasas/deficiencia , Metaloendopeptidasas/genética , Ratones , Ratones Noqueados , Ratones Transgénicos
19.
N Engl J Med ; 376(17): 1647-1658, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28402248

RESUMEN

BACKGROUND: A protein that is expressed on capillary endothelial cells, called GPIHBP1 (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1), binds lipoprotein lipase and shuttles it to its site of action in the capillary lumen. A deficiency in GPIHBP1 prevents lipoprotein lipase from reaching the capillary lumen. Patients with GPIHBP1 deficiency have low plasma levels of lipoprotein lipase, impaired intravascular hydrolysis of triglycerides, and severe hypertriglyceridemia (chylomicronemia). During the characterization of a monoclonal antibody-based immunoassay for GPIHBP1, we encountered two plasma samples (both from patients with chylomicronemia) that contained an interfering substance that made it impossible to measure GPIHBP1. That finding raised the possibility that those samples might contain GPIHBP1 autoantibodies. METHODS: Using a combination of immunoassays, Western blot analyses, and immunocytochemical studies, we tested the two plasma samples (as well as samples from other patients with chylomicronemia) for the presence of GPIHBP1 autoantibodies. We also tested the ability of GPIHBP1 autoantibodies to block the binding of lipoprotein lipase to GPIHBP1. RESULTS: We identified GPIHBP1 autoantibodies in six patients with chylomicronemia and found that these autoantibodies blocked the binding of lipoprotein lipase to GPIHBP1. As in patients with GPIHBP1 deficiency, those with GPIHBP1 autoantibodies had low plasma levels of lipoprotein lipase. Three of the six patients had systemic lupus erythematosus. One of these patients who had GPIHBP1 autoantibodies delivered a baby with plasma containing maternal GPIHBP1 autoantibodies; the infant had severe but transient chylomicronemia. Two of the patients with chylomicronemia and GPIHBP1 autoantibodies had a response to treatment with immunosuppressive agents. CONCLUSIONS: In six patients with chylomicronemia, GPIHBP1 autoantibodies blocked the ability of GPIHBP1 to bind and transport lipoprotein lipase, thereby interfering with lipoprotein lipase-mediated processing of triglyceride-rich lipoproteins and causing severe hypertriglyceridemia. (Funded by the National Heart, Lung, and Blood Institute and the Leducq Foundation.).


Asunto(s)
Autoanticuerpos/sangre , Hiperlipoproteinemia Tipo I/inmunología , Lipoproteína Lipasa/metabolismo , Receptores de Lipoproteína/inmunología , Adulto , Autoanticuerpos/fisiología , Femenino , Humanos , Hiperlipoproteinemia Tipo I/sangre , Inmunoensayo , Lipólisis , Lipoproteína Lipasa/sangre , Masculino , Persona de Mediana Edad , Unión Proteica , Transporte de Proteínas , Receptores de Lipoproteína/metabolismo
20.
Proc Natl Acad Sci U S A ; 114(8): 2000-2005, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28167768

RESUMEN

Cholesterol is a crucial lipid within the plasma membrane of mammalian cells. Recent biochemical studies showed that one pool of cholesterol in the plasma membrane is "accessible" to binding by a modified version of the cytolysin perfringolysin O (PFO*), whereas another pool is sequestered by sphingomyelin and cannot be bound by PFO* unless the sphingomyelin is destroyed with sphingomyelinase (SMase). Thus far, it has been unclear whether PFO* and related cholesterol-binding proteins bind uniformly to the plasma membrane or bind preferentially to specific domains or morphologic features on the plasma membrane. Here, we used nanoscale secondary ion mass spectrometry (NanoSIMS) imaging, in combination with 15N-labeled cholesterol-binding proteins (PFO* and ALO-D4, a modified anthrolysin O), to generate high-resolution images of cholesterol distribution in the plasma membrane of Chinese hamster ovary (CHO) cells. The NanoSIMS images revealed preferential binding of PFO* and ALO-D4 to microvilli on the plasma membrane; lower amounts of binding were detectable in regions of the plasma membrane lacking microvilli. The binding of ALO-D4 to the plasma membrane was virtually eliminated when cholesterol stores were depleted with methyl-ß-cyclodextrin. When cells were treated with SMase, the binding of ALO-D4 to cells increased, largely due to increased binding to microvilli. Remarkably, lysenin (a sphingomyelin-binding protein) also bound preferentially to microvilli. Thus, high-resolution images of lipid-binding proteins on CHO cells can be acquired with NanoSIMS imaging. These images demonstrate that accessible cholesterol, as judged by PFO* or ALO-D4 binding, is not evenly distributed over the entire plasma membrane but instead is highly enriched on microvilli.


Asunto(s)
Toxinas Bacterianas/química , Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas Hemolisinas/química , Microvellosidades/metabolismo , Imagen Molecular/métodos , Nanotubos/química , Animales , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Células CHO , Técnicas de Cultivo de Célula/métodos , Membrana Celular/ultraestructura , Cricetulus , Proteínas Hemolisinas/metabolismo , Marcaje Isotópico , Glicoproteínas de Membrana/metabolismo , Microscopía Confocal , Isótopos de Nitrógeno/química , Unión Proteica , Espectrometría de Masa de Ion Secundario , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielinas/metabolismo , beta-Ciclodextrinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA