Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Epigenetics ; 9(1): 173-81, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24196393

RESUMEN

Long non-coding RNAs (lncRNAs) were recently shown to regulate chromatin remodelling activities. Their function in regulating gene expression switching during specific developmental stages is poorly understood. Here we describe a nuclear, non-coding transcript responsive for the stage-specific activation of the chicken adult α(D) globin gene. This non-coding transcript, named α-globin transcript long non-coding RNA (lncRNA-αGT) is transcriptionally upregulated in late stages of chicken development, when active chromatin marks the adult α(D) gene promoter. Accordingly, the lncRNA-αGT promoter drives erythroid-specific transcription. Furthermore, loss of function experiments showed that lncRNA-αGT is required for full activation of the α(D) adult gene and maintenance of transcriptionally active chromatin. These findings uncovered lncRNA-αGT as an important part of the switching from embryonic to adult α-globin gene expression, and suggest a function of lncRNA-αGT in contributing to the maintenance of adult α-globin gene expression by promoting an active chromatin structure.


Asunto(s)
ARN Largo no Codificante/metabolismo , Globinas alfa/genética , Animales , Diferenciación Celular/genética , Línea Celular , Pollos , Cromatina/genética , Cromatina/metabolismo , Activación Transcripcional , Globinas alfa/metabolismo
2.
Epigenetics ; 8(8): 827-38, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23880533

RESUMEN

Genomic loci composed of more than one gene are frequently subjected to differential gene expression, with the chicken α-globin domain being a clear example. In the present study we aim to understand the globin switching mechanisms responsible for the epigenetic silencing of the embryonic π gene and the transcriptional activation of the adult α(D) and α(A) genes at the genomic domain level. In early stages, we describe a physical contact between the embryonic π gene and the distal 3' enhancer that is lost later during development. We show that such a level of regulation is achieved through the establishment of a DNA hypermethylation sub-domain that includes the embryonic gene and the adjacent genomic sequences. The multifunctional CCCTCC-binding factor (CTCF), which is located upstream of the α(D) gene promoter, delimits this sub-domain and creates a transition between the inactive sub-domain and the active sub-domain, which includes the adult α(D) gene. In avian-transformed erythroblast HD3 cells that are induced to differentiate, we found active DNA demethylation of the adult α(D) promoter, coincident with the incorporation of 5-hydroxymethylcytosine (5hmC) and concomitant with adult gene transcriptional activation. These results suggest that autonomous silencing of the embryonic π gene is needed to facilitate an optimal topological conformation of the domain. This model proposes that CTCF is contributing to a specific chromatin configuration that is necessary for differential α-globin gene expression during development.


Asunto(s)
Desarrollo Embrionario/genética , Silenciador del Gen , Proteínas Represoras/genética , Globinas alfa/genética , Animales , Secuencia de Bases , Factor de Unión a CCCTC , Diferenciación Celular , Embrión de Pollo , Cromatina/metabolismo , Islas de CpG , Metilación de ADN , Epigénesis Genética , Células Eritroides/citología , Regulación de la Expresión Génica , Sitios Genéticos , Histonas/metabolismo , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Globinas alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA