Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Trials ; 21(1): 124-135, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37615179

RESUMEN

BACKGROUND: Comparative effectiveness research is meant to determine which commonly employed medical interventions are most beneficial, least harmful, and/or most costly in a real-world setting. While the objectives for comparative effectiveness research are clear, the field has failed to develop either a uniform definition of comparative effectiveness research or an appropriate set of recommendations to provide standards for the design of critical care comparative effectiveness research trials, spurring controversy in recent years. The insertion of non-representative control and/or comparator arm subjects into critical care comparative effectiveness research trials can threaten trial subjects' safety. Nonetheless, the broader scientific community does not always appreciate the importance of defining and maintaining critical care practices during a trial, especially when vulnerable, critically ill populations are studied. Consequently, critical care comparative effectiveness research trials sometimes lack properly constructed control or active comparator arms altogether and/or suffer from the inclusion of "unusual critical care" that may adversely affect groups enrolled in one or more arms. This oversight has led to critical care comparative effectiveness research trial designs that impair informed consent, confound interpretation of trial results, and increase the risk of harm for trial participants. METHODS/EXAMPLES: We propose a novel approach to performing critical care comparative effectiveness research trials that mandates the documentation of critical care practices prior to trial initiation. We also classify the most common types of critical care comparative effectiveness research trials, as well as the most frequent errors in trial design. We present examples of these design flaws drawn from past and recently published trials as well as examples of trials that avoided those errors. Finally, we summarize strategies employed successfully in well-designed trials, in hopes of suggesting a comprehensive standard for the field. CONCLUSION: Flawed critical care comparative effectiveness research trial designs can lead to unsound trial conclusions, compromise informed consent, and increase risks to research subjects, undermining the major goal of comparative effectiveness research: to inform current practice. Well-constructed control and comparator arms comprise indispensable elements of critical care comparative effectiveness research trials, key to improving the trials' safety and to generating trial results likely to improve patient outcomes in clinical practice.


Asunto(s)
Brazo , Investigación sobre la Eficacia Comparativa , Humanos , Consentimiento Informado , Sujetos de Investigación , Cuidados Críticos
2.
Nano Lett ; 23(20): 9195-9202, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37788377

RESUMEN

The analysis of small particles, including extracellular vesicles and viruses, is contingent on their ability to scatter sufficient light to be detected. These detection methods include flow cytometry, nanoparticle tracking analysis, and single particle reflective image sensing. To standardize measurements and enable orthogonal comparisons between platforms, a quantifiable limit of detection is required. The main parameters that dictate the amount of light scattered by particles include size, morphology, and refractive index. To date, there has been a lack of accessible techniques for measuring the refractive index of nanoparticles at a single-particle level. Here, we demonstrate two methods of deriving a small particle refractive index using orthogonal measurements with commercially available platforms. These methods can be applied at either a single-particle or population level, enabling the integration of diameter and scattering cross section values to derive the refractive index using Mie theory.


Asunto(s)
Vesículas Extracelulares , Nanopartículas , Humanos , Refractometría , Citometría de Flujo/métodos
3.
Cytometry A ; 97(6): 569-581, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31250561

RESUMEN

The study of extracellular vesicles (EVs) is a rapidly growing field due to their great potential in many areas of clinical medicine including diagnostics, prognostics, theranostics, and therapeutics. Flow cytometry is currently one of the most popular methods of analyzing EVs due to it being a high-throughput, multiparametric technique, that is readily available in the majority of research labs. Despite its wide use, few commercial flow cytometers are designed specifically for the detection of EVs. Many flow cytometers used for EV analysis are working at their detection limits and are unable to detect the majority of EVs. Currently, very little standardization exists for EV flow cytometry, which is an issue because flow cytometers vary considerably in the way they collect scattered or fluorescent light from particles being interrogated. This makes published research hard to interpret, compare, and in some cases, impossible to reproduce. Here we demonstrate a method of flow cytometer light scatter standardization, utilizing flow cytometer postacquisition analysis software (FCMPASS ). FCMPASS is built upon Mie theory and enables the approximation of flow cytometer geometric parameters either by analyzing beads of known diameter and refractive index or by inputting the collection angle if known. The software is then able to create a scatter-diameter curve and scatter-refractive index curve that enables researchers to convert scattering data and instrument sensitivity into standardized units. Furthermore, with the correct controls, light scatter data can be converted to diameter distributions or refractive index distributions. FCMPASS therefore offers a freely available and ergonomic method of standardizing and further extending EV characterization using flow cytometry.


Asunto(s)
Vesículas Extracelulares , Citometría de Flujo , Humanos , Luz , Estándares de Referencia , Programas Informáticos
4.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38903100

RESUMEN

Background: Septic shock, in humans and in our well-established animal model, is associated with increases in biventricular end diastolic volume (EDV) and decreases in ejection fraction (EF). These abnormalities occur over 2 days and reverse within 10 days. Septic non-survivors do not develop an increase in EDV. The mechanism for this cardiac dysfunction and EDV differences is unknown. Methods: Purpose-bred beagles randomized to receive intrabronchial Staphylococcus aureus (n=27) or saline (n=6) were provided standard ICU care including sedation, mechanical ventilation, and fluid resuscitation to a pulmonary arterial occlusion pressure of over 10mmHg. No catecholamines were administered. Over 96h, cardiac magnetic resonance imaging, echocardiograms, and invasive hemodynamics were serially performed, and laboratory data was collected. Tissue was obtained at 66h from six septic animals. Results: From 0-96h after bacterial challenge, septic animals vs. controls had significantly increased left ventricular wall edema (6%) and wall thinning with loss of mass (15%) which was more pronounced at 48h in non-survivors than survivors. On histology, edema was located predominantly in myocytes, the interstitium, and endothelial cells. Edema was associated with significantly worse biventricular function (lower EFs), ventricular-arterial coupling, and circumferential strain. In septic animals, from 0-24h, the EDV decreased from baseline and, despite cardiac filling pressures being similar, decreased significantly more in non-survivors. From 24-48h, all septic animals had increases in biventricular chamber sizes. Survivors biventricular EDVs were significantly greater than baseline and in non-survivors, where biventricular EDVs were not different from baseline. Preload, afterload, or HR differences did not explain these differential serial changes in chamber size. Conclusion: Systolic and diastolic cardiac dysfunction during sepsis is associated with ventricular wall edema. Rather than differences in preload, afterload, or heart rate, structural alterations to the ventricular wall best account for the volume changes associated with outcome during sepsis. In non-survivors, from 0-24h, sepsis induces a more severe diastolic dysfunction, further decreasing chamber size. The loss of left ventricular mass with wall thinning in septic survivors may, in part explain, the EDV increases from 24-48h. However, these changes continued and even accelerated into the recovery phase consistent with a reparative process rather than ongoing injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA