Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D476-D482, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37986218

RESUMEN

The incorporation of non-canonical amino acids (ncAAs) into proteins is a powerful technique used in various research fields. Genetic code expansion (GCE) is the most common way to achieve this: a specific codon is selected to be decoded by a dedicated tRNA orthogonal to the endogenous ones. In the past 30 years, great progress has been made to obtain novel tRNA synthetases (aaRSs) accepting a variety of ncAAs with distinct physicochemical properties, to develop robust in vitro assays or approaches for codon reassignment. This sparked the use of the technique, leading to the accumulation of publications, from which gathering all relevant information can appear daunting. Here we present iNClusive (https://non-canonical-aas.biologie.uni-freiburg.de/), a manually curated, extensive repository using standardized nomenclature that provides organized information on ncAAs successfully incorporated into target proteins as verified by mass spectrometry. Since we focused on tRNA synthetase-based tRNA loading, we provide the sequence of the tRNA and aaRS used for the incorporation. Derived from more than 687 peer-reviewed publications, it currently contains 2432 entries about 466 ncAAs, 569 protein targets, 500 aaRSs and 144 tRNAs. We foresee iNClusive will encourage more researchers to experiment with ncAA incorporation thus contributing to the further development of this exciting technique.


Asunto(s)
Secuencia de Aminoácidos , Aminoácidos , Bases de Datos de Proteínas , Proteínas , Aminoácidos/química , Aminoácidos/metabolismo , Codón/genética , Código Genético , Proteínas/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Internet
2.
Nucleic Acids Res ; 46(3): 1470-1485, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29244160

RESUMEN

In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) act as post-transcriptional regulators during carbon catabolite repression (CCR). In this regard Crc is required for full-fledged Hfq-mediated translational repression of catabolic genes. RNAseq based transcriptome analyses revealed a significant overlap between the Crc and Hfq regulons, which in conjunction with genetic data supported a concerted action of both proteins. Biochemical and biophysical approaches further suggest that Crc and Hfq form an assembly in the presence of RNAs containing A-rich motifs, and that Crc interacts with both, Hfq and RNA. Through these interactions, Crc enhances the stability of Hfq/Crc/RNA complexes, which can explain its facilitating role in Hfq-mediated translational repression. Hence, these studies revealed for the first time insights into how an interacting protein can modulate Hfq function. Moreover, Crc is shown to interfere with binding of a regulatory RNA to Hfq, which bears implications for riboregulation. These results are discussed in terms of a working model, wherein Crc prioritizes the function of Hfq toward utilization of favored carbon sources.


Asunto(s)
Proteínas Bacterianas/genética , Represión Catabólica , Proteína de Factor 1 del Huésped/genética , Biosíntesis de Proteínas , Pseudomonas aeruginosa/genética , ARN Bacteriano/genética , Proteínas Represoras/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/química , Proteína de Factor 1 del Huésped/metabolismo , Cinética , Modelos Moleculares , Motivos de Nucleótidos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Regulón , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Transcriptoma
3.
ACS Synth Biol ; 11(10): 3529-3533, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36180042

RESUMEN

The optogenetic tool LEXY consists of the second light oxygen voltage (LOV) domain of Avena sativa phototropin 1 mutated to contain a nuclear export signal. It allows exporting from the nucleus with blue light proteins of interest (POIs) genetically fused to it. Mutations slowing the dark recovery rate of the LOV domain within LEXY were recently shown to allow for better depletion of some POIs from the nucleus in Drosophila embryos and for the usage of low light illumination regimes. We investigated these variants in mammalian cells and found they increase the cytoplasmic localization of the proteins we tested after illumination, but also during the dark phases, which corresponds to higher leakiness of the system. These data suggest that, when aiming to sequester into the nucleus a protein with a cytoplasmic function, the original LEXY is preferable. The iLEXY variants are, instead, advantageous when wanting to deplete the nucleus of the POI as much as possible.


Asunto(s)
Proteínas Nucleares , Fototropinas , Animales , Fototropinas/genética , Fototropinas/metabolismo , Proteínas Nucleares/metabolismo , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Señales de Exportación Nuclear/genética , Luz , Avena/genética , Avena/metabolismo , Oxígeno/metabolismo , Mamíferos/metabolismo
4.
J Biochem ; 169(3): 273-286, 2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33245128

RESUMEN

The nucleus is a very complex organelle present in eukaryotic cells. Having the crucial task to safeguard, organize and manage the genetic information, it must tightly control its molecular constituents, its shape and its internal architecture at any given time. Despite our vast knowledge of nuclear cell biology, much is yet to be unravelled. For instance, only recently we came to appreciate the existence of a dynamic nuclear cytoskeleton made of actin filaments that regulates processes such as gene expression, DNA repair and nuclear expansion. This suggests further exciting discoveries ahead of us. Modern cell biologists embrace a new methodology relying on precise perturbations of cellular processes that require a reversible, highly spatially confinable, rapid, inexpensive and tunEable external stimulus: light. In this review, we discuss how optogenetics, the state-of-the-art technology that uses genetically encoded light-sensitive proteins to steer biological processes, can be adopted to specifically investigate nuclear cell biology.


Asunto(s)
Núcleo Celular/metabolismo , Optogenética/métodos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animales , Biología Celular , Núcleo Celular/genética , Citoesqueleto/metabolismo , Regulación de la Expresión Génica , Humanos , Luz , Ingeniería de Proteínas/métodos , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA