Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 132(11): 1489-1504, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37144413

RESUMEN

BACKGROUND: Dkk3 (Dickkopf-3) is a secreted glycoprotein known for its proapoptotic and angiogenic activity. The role of Dkk3 in cardiovascular homeostasis is largely unknown. Remarkably, the Dkk3 gene maps within a chromosome segment linked to the hypertensive phenotype in spontaneously hypertensive rats (SHR). METHODS: We used Dkk3-/- mice or stroke-resistant (sr) and stroke-prone (sp) SHR to examine the role of Dkk3 in the central and peripheral regulation of blood pressure (BP). We used lentiviral expression vector to rescue Dkk3 in knockout mice or to induce Dkk3 overexpression or silencing in SHR. RESULTS: Genetic deletion of Dkk3 in mice enhanced BP and impaired endothelium-dependent acetylcholine-induced relaxation of resistance arteries. These alterations were rescued by restoring Dkk3 expression either in the periphery or in the central nervous system (CNS). Dkk3 was required for the constitutive expression of VEGF (vascular endothelium growth factor), and the action of Dkk3 on BP and endothelium-dependent vasorelaxation was mediated by VEGF-stimulated phosphatidylinositol-3-kinase pathway, leading to eNOS (endothelial NO synthase) activation both in resistance arteries and the CNS. The regulatory function of Dkk3 on BP was confirmed in SHR stroke-resistant and SHR stroke-prone in which was blunted in both resistance arteries and brainstem. In SHR stroke-resistant, lentiviral expression vector-induced Dkk3 expression in the CNS largely reduced BP, whereas Dkk3 knock-down further enhanced BP. In SHR stroke-prone challenged with a hypersodic diet, lentiviral expression vector-induced Dkk3 expression in the CNS displayed a substantial antihypertensive effect and delayed the occurrence of stroke. CONCLUSIONS: These findings demonstrate that Dkk3 acts as peripheral and central regulator of BP by promoting VEGF expression and activating a VEGF/Akt (protein kinase B)/eNOS hypotensive axis.


Asunto(s)
Hipertensión , Accidente Cerebrovascular , Animales , Ratones , Ratas , Presión Sanguínea , Endotelio Vascular/metabolismo , Hipertensión/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas Endogámicas SHR , Accidente Cerebrovascular/genética , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular , Vasodilatación
2.
Artículo en Inglés | MEDLINE | ID: mdl-38890195

RESUMEN

Neurodegenerative disorders are typically featured by the occurrence of neuronal inclusions. In the case of Parkinson's disease (PD) these correspond to Lewy bodies (LBs), which are routinely defined as proteinaceous inclusions composed of alpha-synuclein (alpha-syn). In turn, alpha-syn is considered to be the key protein in producing PD and fostering its progression. Recent studies challenged such a concept and emphasized the occurrence of other proteins such as p62 and poly-ubiquitin (Poly-ub) in the composition of LBs, which are also composed of large amounts of tubulo-vesicular structures. All these components, which accumulate within the cytosol of affected neurons in PD, may be the consequence of a dysfunction of major clearing pathways. In fact, autophagy-related systems are constantly impaired in inherited PD and genetic models of PD. The present study was designed to validate whether a pharmacological inhibition of autophagy within catecholamine cells produces cell damage and accumulation of specific proteins and tubulo-vesicular structures. The stoichiometry counts of single proteins, which accumulate within catecholamine neurons was carried out along with the area of tubulo-vesicular structures. In these experimental conditions p62 and Poly-ub accumulation exceeded at large the amounts of alpha-syn. In those areas where Poly-ub and p62 were highly expressed, tubulo-vesicular structures were highly represented compared with surrounding cytosol. The present study confirms new vistas about LBs composition and lends substance to the scenario that autophagy inhibition rather than a single protein dysfunction as key determinant of PD.

3.
J Neural Transm (Vienna) ; 131(4): 335-358, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38367081

RESUMEN

Methamphetamine (METH) produces a cytopathology, which is rather specific within catecholamine neurons both in vitro and ex vivo, in animal models and chronic METH abusers. This led some authors to postulate a sort of parallelism between METH cytopathology and cell damage in Parkinson's disease (PD). In fact, METH increases and aggregates alpha-syn proto-fibrils along with producing spreading of alpha-syn. Although alpha-syn is considered to be the major component of aggregates and inclusions developing within diseased catecholamine neurons including classic Lewy body (LB), at present, no study provided a quantitative assessment of this protein in situ, neither following METH nor in LB occurring in PD. Similarly, no study addressed the quantitative comparison between occurrence of alpha-syn and other key proteins and no investigation measured the protein compared with non-protein structure within catecholamine cytopathology. Therefore, the present study addresses these issues using an oversimplified model consisting of a catecholamine cell line where the novel approach of combined light and electron microscopy (CLEM) was used measuring the amount of alpha-syn, which is lower compared with p62 or poly-ubiquitin within pathological cell domains. The scenario provided by electron microscopy reveals unexpected findings, which are similar to those recently described in the pathology of PD featuring packing of autophagosome-like vesicles and key proteins shuttling autophagy substrates. Remarkably, small seed-like areas, densely packed with p62 molecules attached to poly-ubiquitin within wide vesicular domains occurred. The present data shed new light about quantitative morphometry of catecholamine cell damage in PD and within the addicted brain.


Asunto(s)
Metanfetamina , Enfermedad de Parkinson , Animales , Metanfetamina/farmacología , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Microscopía Electrónica , Catecolaminas , Ubiquitinas
4.
Psychophysiology ; 61(6): e14550, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38433453

RESUMEN

Motivationally significant events like oddball stimuli elicit both a characteristic event-related potential (ERPs) known as P300 and a set of autonomic responses including a phasic pupil dilation. Although co-occurring, P300 and pupil-dilation responses to oddball events have been repeatedly found to be uncorrelated, suggesting separate origins. We re-examined their relationship in the context of a three-stimulus version of the auditory oddball task, independently manipulating the frequency (rare vs. repeated) and motivational significance (relevance for the participant's task) of the stimuli. We used independent component analysis to derive a P300b component from EEG traces and linear modeling to separate a stimulus-related pupil-dilation response from a potentially confounding action-related response. These steps revealed that, once the complexity of ERP and pupil-dilation responses to oddball targets is accounted for, the amplitude of phasic pupil dilations and P300b are tightly and positively correlated (across participants: r = .69 p = .002), supporting their coordinated generation.


Asunto(s)
Electroencefalografía , Potenciales Relacionados con Evento P300 , Motivación , Pupila , Humanos , Potenciales Relacionados con Evento P300/fisiología , Masculino , Femenino , Pupila/fisiología , Adulto Joven , Adulto , Motivación/fisiología , Estimulación Acústica
5.
Mol Ther ; 31(1): 282-299, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36116006

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disorder with no effective cure currently available. Over the past few years our research has shown that alterations in sphingolipid metabolism represent a critical determinant in HD pathogenesis. In particular, aberrant metabolism of sphingosine-1-phosphate (S1P) has been reported in multiple disease settings, including human postmortem brains from HD patients. In this study, we investigate the potential therapeutic effect of the inhibition of S1P degradative enzyme SGPL1, by the chronic administration of the 2-acetyl-5-tetrahydroxybutyl imidazole (THI) inhibitor. We show that THI mitigated motor dysfunctions in both mouse and fly models of HD. The compound evoked the activation of pro-survival pathways, normalized levels of brain-derived neurotrophic factor, preserved white matter integrity, and stimulated synaptic functions in HD mice. Metabolically, THI restored normal levels of hexosylceramides and stimulated the autophagic and lysosomal machinery, facilitating the reduction of nuclear inclusions of both wild-type and mutant huntingtin proteins.


Asunto(s)
Enfermedad de Huntington , Ratones , Humanos , Animales , Enfermedad de Huntington/tratamiento farmacológico , Modelos Teóricos , Imidazoles/farmacología , Glicoesfingolípidos , Modelos Animales de Enfermedad , Proteína Huntingtina/genética
6.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273545

RESUMEN

Cytopathology induced by methamphetamine (METH) is reminiscent of degenerative disorders such as Parkinson's disease, and it is characterized by membrane organelles arranged in tubulo-vesicular structures. These areas, appearing as clusters of vesicles, have never been defined concerning the presence of specific organelles. Therefore, the present study aimed to identify the relative and absolute area of specific membrane-bound organelles following a moderate dose (100 µM) of METH administered to catecholamine-containing PC12 cells. Organelles and antigens were detected by immunofluorescence, and they were further quantified by plain electron microscopy and in situ stoichiometry. This analysis indicated an increase in autophagosomes and damaged mitochondria along with a decrease in lysosomes and healthy mitochondria. Following METH, a severe dissipation of hallmark proteins from their own vesicles was measured. In fact, the amounts of LC3 and p62 were reduced within autophagy vacuoles compared with the whole cytosol. Similarly, LAMP1 and Cathepsin-D within lysosomes were reduced. These findings suggest a loss of compartmentalization and confirm a decrease in the competence of cell clearing organelles during catecholamine degeneration. Such cell entropy is consistent with a loss of energy stores, which routinely govern appropriate subcellular compartmentalization.


Asunto(s)
Autofagosomas , Lisosomas , Metanfetamina , Metanfetamina/farmacología , Animales , Células PC12 , Ratas , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Catepsina D/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
7.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38612739

RESUMEN

In the last two decades, alpha-synuclein (alpha-syn) assumed a prominent role as a major component and seeding structure of Lewy bodies (LBs). This concept is driving ongoing research on the pathophysiology of Parkinson's disease (PD). In line with this, alpha-syn is considered to be the guilty protein in the disease process, and it may be targeted through precision medicine to modify disease progression. Therefore, designing specific tools to block the aggregation and spreading of alpha-syn represents a major effort in the development of disease-modifying therapies in PD. The present article analyzes concrete evidence about the significance of alpha-syn within LBs. In this effort, some dogmas are challenged. This concerns the question of whether alpha-syn is more abundant compared with other proteins within LBs. Again, the occurrence of alpha-syn compared with non-protein constituents is scrutinized. Finally, the prominent role of alpha-syn in seeding LBs as the guilty structure causing PD is questioned. These revisited concepts may be helpful in the process of validating which proteins, organelles, and pathways are likely to be involved in the damage to meso-striatal dopamine neurons and other brain regions involved in PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , Cuerpos de Lewy , Cuerpo Estriado , Progresión de la Enfermedad
8.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542133

RESUMEN

The present investigation was designed based on the evidence that, in neurodegenerative disorders, such as Alzheimer's dementia (AD) and Parkinson's disease (PD), damage to the locus coeruleus (LC) arising norepinephrine (NE) axons (LC-NE) is documented and hypothesized to foster the onset and progression of neurodegeneration within target regions. Specifically, the present experiments were designed to assess whether selective damage to LC-NE axons may alter key proteins involved in neurodegeneration within specific limbic regions, such as the hippocampus and piriform cortex, compared with the dorsal striatum. To achieve this, a loss of LC-NE axons was induced by the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) in C57 Black mice, as assessed by a loss of NE and dopamine-beta-hydroxylase within target regions. In these experimental conditions, the amount of alpha-synuclein (alpha-syn) protein levels were increased along with alpha-syn expressing neurons within the hippocampus and piriform cortex. Similar findings were obtained concerning phospho-Tau immunoblotting. In contrast, a decrease in inducible HSP70-expressing neurons and a loss of sequestosome (p62)-expressing cells, along with a loss of these proteins at immunoblotting, were reported. The present data provide further evidence to understand why a loss of LC-NE axons may foster limbic neurodegeneration in AD and limbic engagement during PD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Ratones , Animales , Locus Coeruleus/metabolismo , Norepinefrina/metabolismo , Neuronas/metabolismo , Neurotoxinas/farmacología , Axones/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Parkinson/metabolismo
9.
Eur J Neurol ; 30(1): 32-46, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36086917

RESUMEN

BACKGROUND AND PURPOSE: Human neuropathological studies indicate that the pontine nucleus Locus Coeruleus (LC) undergoes significant and early degeneration in Alzheimer's disease. This line of evidence alongside experimental data suggests that the LC functional/structural decay may represent a critical factor for Alzheimer's disease pathophysiological and clinical progression. In the present prospective study, we used Magnetic Resonance Imaging (MRI) with LC-sensitive sequence (LC-MRI) to investigate in vivo the LC involvement in Alzheimer's disease progression, and whether specific LC-MRI features at baseline are associated with prognosis and cognitive performance in amnestic Mild Cognitive Impairment. METHODS: LC-MRI parameters were measured at baseline by a template-based method on 3.0-T magnetic resonance images in 34 patients with Alzheimer's disease dementia, 73 patients with amnestic Mild Cognitive Impairment, and 53 cognitively intact individuals. A thorough neurological and neuropsychological assessment was performed at baseline and 2.5-year follow-up. RESULTS: In subjects with Mild Cognitive Impairment who converted to dementia (n = 32), the LC intensity and number of LC-related voxels were significantly lower than in cognitively intact individuals, resembling those observed in demented patients. Such a reduction was not detected in Mild Cognitive Impairment individuals, who remained stable at follow-up. In Mild Cognitive Impairment subjects converting to dementia, LC-MRI parameter reduction was maximal in the rostral part of the left nucleus. Structural equation modeling analysis showed that LC-MRI parameters positively correlate with cognitive performance. CONCLUSIONS: Our findings highlight a potential role of LC-MRI for predicting clinical progression in Mild Cognitive Impairment and support the key role of LC degeneration in the Alzheimer clinical continuum.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Locus Coeruleus/diagnóstico por imagen , Estudios Prospectivos , Progresión de la Enfermedad , Disfunción Cognitiva/patología , Pruebas Neuropsicológicas , Imagen por Resonancia Magnética/métodos
10.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674920

RESUMEN

The carcinogenesis of glial tumors appears complex because of the many genetic and epigenetic phenomena involved. Among these, cellular prion protein (PrPC) is considered a key factor in cell-death resistance and important aspect implicated in tumorigenesis. Autophagy also plays an important role in cell death in various pathological conditions. These two cellular phenomena are related and share the same activation by specific alterations in the cellular microenvironment. Furthermore, there is an interdependence between autophagy and prion activity in glioma tumorigenesis. Glioma is one of the most aggressive known cancers, and the fact that such poorly studied processes as autophagy and PrPC activity are so strongly involved in its carcinogenesis suggests that by better understanding their interaction, more can be understood about its origin and treatment. Few studies in the literature relate these two cellular phenomena, much less try to explain their combined activity and role in glioma carcinogenesis. In this study, we explored the recent findings on the molecular mechanism and regulation pathways of autophagy, examining the role of PrPC in autophagy processes and how they may play a central role in glioma tumorigenesis. Among the many molecular interactions that PrP physiologically performs, it appears that processes shared with autophagy activity are those most implicated in glial tumor carcinogeneses such as activity on MAP kinases, PI3K, and mTOR. This work can be supportive and valuable as a basis for further future studies on this topic.


Asunto(s)
Glioma , Proteínas PrPC , Priones , Humanos , Proteínas Priónicas , Priones/metabolismo , Glioma/genética , Autofagia , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Proteínas PrPC/metabolismo , Microambiente Tumoral
11.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068993

RESUMEN

Tinnitus is the perception of noise in the absence of acoustic stimulation (phantom noise). In most patients suffering from chronic peripheral tinnitus, an alteration of outer hair cells (OHC) starting from the stereocilia (SC) occurs. This is common following ototoxic drugs, sound-induced ototoxicity, and acoustic degeneration. In all these conditions, altered coupling between the tectorial membrane (TM) and OHC SC is described. The present review analyzes the complex interactions involving OHC and TM. These need to be clarified to understand which mechanisms may underlie the onset of tinnitus and why the neuropathology of chronic degenerative tinnitus is similar, independent of early triggers. In fact, the fine neuropathology of tinnitus features altered mechanisms of mechanic-electrical transduction (MET) at the level of OHC SC. The appropriate coupling between OHC SC and TM strongly depends on autophagy. The involvement of autophagy may encompass degenerative and genetic tinnitus, as well as ototoxic drugs and acoustic trauma. Defective autophagy explains mitochondrial alterations and altered protein handling within OHC and TM. This is relevant for developing novel treatments that stimulate autophagy without carrying the burden of severe side effects. Specific phytochemicals, such as curcumin and berberin, acting as autophagy activators, may mitigate the neuropathology of tinnitus.


Asunto(s)
Acúfeno , Humanos , Células Ciliadas Auditivas Externas , Estereocilios , Sonido , Estimulación Acústica
12.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240326

RESUMEN

The present article discusses the role of light in altering autophagy, both within the outer retina (retinal pigment epithelium, RPE, and the outer segment of photoreceptors) and the inner choroid (Bruch's membrane, BM, endothelial cells and the pericytes of choriocapillaris, CC). Here autophagy is needed to maintain the high metabolic requirements and to provide the specific physiological activity sub-serving the process of vision. Activation or inhibition of autophagy within RPE strongly depends on light exposure and it is concomitant with activation or inhibition of the outer segment of the photoreceptors. This also recruits CC, which provides blood flow and metabolic substrates. Thus, the inner choroid and outer retina are mutually dependent and their activity is orchestrated by light exposure in order to cope with metabolic demand. This is tuned by the autophagy status, which works as a sort of pivot in the cross-talk within the inner choroid/outer retina neurovascular unit. In degenerative conditions, and mostly during age-related macular degeneration (AMD), autophagy dysfunction occurs in this area to induce cell loss and extracellular aggregates. Therefore, a detailed analysis of the autophagy status encompassing CC, RPE and interposed BM is key to understanding the fine anatomy and altered biochemistry which underlie the onset and progression of AMD.


Asunto(s)
Células Endoteliales , Degeneración Macular , Humanos , Células Endoteliales/metabolismo , Coroides/metabolismo , Retina/metabolismo , Lámina Basal de la Coroides/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Degeneración Macular/metabolismo , Autofagia
13.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983032

RESUMEN

Huntington's disease is one of the most common dominantly inherited neurodegenerative disorders caused by an expansion of a polyglutamine (polyQ) stretch in the N-terminal region of huntingtin (Htt). Among all the molecular mechanisms, affected by the mutation, emerging evidence proposes glycosphingolipid dysfunction as one of the major determinants. High levels of sphingolipids have been found to localize in the myelin sheaths of oligodendrocytes, where they play an important role in myelination stability and functions. In this study, we investigated any potential existing link between sphingolipid modulation and myelin structure by performing both ultrastructural and biochemical analyses. Our findings demonstrated that the treatment with the glycosphingolipid modulator THI preserved myelin thickness and the overall structure and reduced both area and diameter of pathologically giant axons in the striatum of HD mice. These ultrastructural findings were associated with restoration of different myelin marker protein, such as myelin-associated glycoprotein (MAG), myelin basic protein (MBP) and 2', 3' Cyclic Nucleotide 3'-Phosphodiesterase (CNP). Interestingly, the compound modulated the expression of glycosphingolipid biosynthetic enzymes and increased levels of GM1, whose elevation has been extensively reported to be associated with reduced toxicity of mutant Htt in different HD pre-clinical models. Our study further supports the evidence that the metabolism of glycosphingolipids may represent an effective therapeutic target for the disease.


Asunto(s)
Enfermedad de Huntington , Vaina de Mielina , Ratones , Animales , Vaina de Mielina/metabolismo , Glicoesfingolípidos/metabolismo , Cuerpo Estriado/metabolismo , Neostriado/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Proteína Huntingtina/genética , Modelos Animales de Enfermedad , Ratones Transgénicos
14.
J Neurochem ; 163(1): 40-52, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35950445

RESUMEN

Converging translational and clinical research strongly indicates that altered immune and inflammatory homeostasis (neuroinflammation) plays a critical pathophysiological role in Alzheimer's disease (AD), across the clinical continuum. A dualistic role of neuroinflammation may account for a complex biological phenomenon, representing a potential pharmacological target. Emerging blood-based pathophysiological biomarkers, such as cytokines (Cyt) and interleukins (ILs), have been studied as indicators of neuroinflammation in AD. However, inconsistent results have been reported probably due to a lack of standardization of assays with methodological and analytical differences. We used machine-learning and a cross-validation-based statical workflow to explore and analyze the potential impact of key biological factors, such as age, sex, and apolipoprotein-E (APOE) genotype (the major genetic risk factor for late-onset AD) on Cyt. A set of Cyt was selected based on previous literature, and we investigated any potential association in a pooled cohort of cognitively healthy, mild cognitive impairment (MCI), and AD-like dementia patients. We also performed explorative analyses to extrapolate preliminary clinical insights. We found a robust sex effect on IL12 and an APOE-related difference in IL10, with the latter being also related to the presence of advanced cognitive decline. IL1ß was the variable most significantly associated with MCI-to-dementia conversion over a 2.5 year-clinical follow-up. Although preliminary, our data support further clinical research to understand whether plasma Cyt may represent reliable and noninvasive tools serving the investigation of neuroimmune and inflammatory dynamics in AD and to foster biomarker-guided pathway-based therapeutic approaches, within the precision medicine development framework.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Biomarcadores , Disfunción Cognitiva/complicaciones , Citocinas , Progresión de la Enfermedad , Humanos , Interleucina-10 , Interleucina-12
16.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36012188

RESUMEN

Recent evidence shows that methamphetamine (METH) produces mitochondrial alterations that contribute to neurotoxicity. Nonetheless, most of these studies focus on mitochondrial activity, whereas mitochondrial morphology remains poorly investigated. In fact, morphological evidence about the fine structure of mitochondria during METH toxicity is not available. Thus, in the present study we analyzed dose-dependent mitochondrial structural alterations during METH exposure. Light and transmission electron microscopy were used, along with ultrastructural stoichiometry of catecholamine cells following various doses of METH. In the first part of the study cell death and cell degeneration were assessed and they were correlated with mitochondrial alterations observed using light microscopy. In the second part of the study, ultrastructural evidence of specific mitochondrial alterations of crests, inner and outer membranes and matrix were quantified, along with in situ alterations of mitochondrial proteins. Neurodegeneration induced by METH correlates significantly with specific mitochondrial damage, which allows definition of a scoring system for mitochondrial integrity. In turn, mitochondrial alterations are concomitant with a decrease in fission/mitophagy protein Fis1 and DRP1 and an increase in Pink1 and Parkin in situ, at the mitochondrial level. These findings provide structural evidence that mitochondria represent both direct and indirect targets of METH-induced toxicity.


Asunto(s)
Metanfetamina , Metanfetamina/farmacología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
17.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35409135

RESUMEN

α-Synuclein (α-syn) is a protein involved in neuronal degeneration. However, the family of synucleins has recently been demonstrated to be involved in the mechanisms of oncogenesis by selectively accelerating cellular processes leading to cancer. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers, with a specifically high neurotropism. The molecular bases of this biological behavior are currently poorly understood. Here, α-synuclein was analyzed concerning the protein expression in PDAC and the potential association with PDAC neurotropism. Tumor (PDAC) and extra-tumor (extra-PDAC) samples from 20 patients affected by PDAC following pancreatic resections were collected at the General Surgery Unit, University of Pisa. All patients were affected by moderately or poorly differentiated PDAC. The amount of α-syn was compared between tumor and extra-tumor specimen (sampled from non-affected neighboring pancreatic areas) by using in situ immuno-staining with peroxidase anti-α-syn immunohistochemistry, α-syn detection by using Western blotting, and electron microscopy by using α-syn-conjugated immuno-gold particles. All the methods consistently indicate that each PDAC sample possesses a higher amount of α-syn compared with extra-PDAC tissue. Moreover, the expression of α-syn was much higher in those PDAC samples from tumors with perineural infiltration compared with tumors without perineural infiltration.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , alfa-Sinucleína/metabolismo , Adenocarcinoma/patología , Carcinoma Ductal Pancreático/patología , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
18.
Molecules ; 27(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35630599

RESUMEN

The brain area which surrounds the frankly ischemic region is named the area penumbra. In this area, most cells are spared although their oxidative metabolism is impaired. area penumbra is routinely detected by immunostaining of a molecule named Heat Shock Protein 70 (HSP70). Within the area penumbra, autophagy-related proteins also increase. Therefore, in the present study, the autophagy-related microtubule-associated protein I/II-Light Chain 3 (LC3) was investigated within the area penumbra along with HSP70. In C57 black mice, ischemia was induced by permanent occlusion of the distal part of the middle cerebral artery. Immunofluorescence and electron microscopy show that LC3 and HSP70 are overexpressed and co-localize within the area penumbra in the same cells and within similar subcellular compartments. In the area penumbra, marked loss of co-localization of HSP70 and LC3-positive autophagy vacuoles, with lysosomal-associated membrane protein 1 (LAMP1) or cathepsin-D-positive lysosome vacuoles occurs. This study indicates that, within the area penumbra, a failure of autophagolysosomes depends on defective compartmentalization of LC3, LAMP1 and cathepsin-D and a defect in merging between autophagosomes and lysosomes. Such a deleterious effect is likely to induce a depletion of autophagolysosomes and cell clearing systems, which needs to be rescued in the process of improving neuronal survival.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Lisosomas , Animales , Autofagosomas/metabolismo , Autofagia/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Isquemia/metabolismo , Lisosomas/metabolismo , Ratones
19.
Molecules ; 27(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36014442

RESUMEN

The neurotoxins methamphetamine (METH) and 1-methyl-4-phenylpyridinium (MPP+) damage catecholamine neurons. Although sharing the same mechanism to enter within these neurons, METH neurotoxicity mostly depends on oxidative species, while MPP+ toxicity depends on the inhibition of mitochondrial activity. This explains why only a few compounds protect against both neurotoxins. Identifying a final common pathway that is shared by these neurotoxins is key to prompting novel remedies for spontaneous neurodegeneration. In the present study we assessed whether natural extracts from Bacopa monnieri (BM) may provide a dual protection against METH- and MPP+-induced cell damage as measured by light and electron microscopy. The protection induced by BM against catecholamine cell death and degeneration was dose-dependently related to the suppression of reactive oxygen species (ROS) formation and mitochondrial alterations. These were measured by light and electron microscopy with MitoTracker Red and Green as well as by the ultrastructural morphometry of specific mitochondrial structures. In fact, BM suppresses the damage of mitochondrial crests and matrix dilution and increases the amount of healthy and total mitochondria. The present data provide evidence for a natural compound, which protects catecholamine cells independently by the type of experimental toxicity. This may be useful to counteract spontaneous degenerations of catecholamine cells.


Asunto(s)
Bacopa , Metanfetamina , Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , 1-Metil-4-fenilpiridinio/toxicidad , Bacopa/química , Catecolaminas , Metanfetamina/toxicidad , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Neurotoxinas/toxicidad , Especies Reactivas de Oxígeno/metabolismo
20.
Epilepsia ; 62(5): 1184-1192, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33735449

RESUMEN

OBJECTIVE: Markers of seizure recurrence are needed to personalize antiseizure medication (ASM) therapy. In the clinical practice, EEG features are considered to be related to the risk of seizure recurrence for genetic generalized epilepsies (GGE). However, to our knowledge, there are no studies analyzing systematically specific EEG features as indices of ASM efficacy in GGE. In this study, we aimed at identifying EEG indicators of ASM responsiveness in Juvenile Myoclonic Epilepsy (JME), which, among GGE, is characterized by specific electroclinical features. METHODS: We compared the features of prolonged ambulatory EEG (paEEG, 22 h of recording) of JME patients experiencing seizure recurrence within a year ("cases") after EEG recording, with those of patients with sustained seizure freedom for at least 1 year after EEG ("controls"). We included only EEG recordings of patients who had maintained the same ASM regimen (dosage and type) throughout the whole time period from the EEG recording up to the outcome events (which was seizure recurrence for the "cases", or 1-year seizure freedom for "controls"). As predictors, we evaluated the total number, frequency, mean and maximum duration of epileptiform discharges (EDs) and spike density (i.e. total EDs duration/artifact-free EEG duration) recorded during the paEEG. The same indexes were assessed also in standard EEG (stEEG), including activation methods. RESULTS: Both the maximum length and the mean duration of EDs recorded during paEEG significantly differed between cases and controls; when combined in a binary logistic regression model, the maximum length of EDs emerged as the only valid predictor. A cut-off of EDs duration of 2.68 seconds discriminated between cases and controls with a 100% specificity and a 93% sensitivity. The same indexes collected during stEEG lacked both specificity and sensitivity. SIGNIFICANCE: The occurrence of prolonged EDs in EEG recording might represent an indicator of antiepileptic drug failure in JME patients.


Asunto(s)
Electroencefalografía/métodos , Monitoreo Ambulatorio/métodos , Epilepsia Mioclónica Juvenil/tratamiento farmacológico , Epilepsia Mioclónica Juvenil/fisiopatología , Convulsiones/fisiopatología , Adulto , Anticonvulsivantes/uso terapéutico , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Monitorización Neurofisiológica/métodos , Recurrencia , Convulsiones/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA