Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 23(10): 1445-1456, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36138186

RESUMEN

Understanding immune responses to SARS-CoV-2 messenger RNA (mRNA) vaccines is of great interest, principally because of the poor knowledge about the mechanisms of protection. In the present study, we analyzed longitudinally B cell and T cell memory programs against the spike (S) protein derived from ancestral SARS-CoV-2 (Wuhan-1), B.1.351 (beta), B.1.617.2 (delta) and B.1.1.529 (omicron) variants of concern (VOCs) after immunization with an mRNA-based vaccine (Pfizer). According to the magnitude of humoral responses 3 months after the first dose, we identified high and low responders. Opposite to low responders, high responders were characterized by enhanced antibody-neutralizing activity, increased frequency of central memory T cells and durable S-specific CD8+ T cell responses. Reduced binding antibodies titers combined with long-term specific memory T cells that had distinct polyreactive properties were found associated with subsequent breakthrough with VOCs in low responders. These results have important implications for the design of new vaccines and new strategies for booster follow-up.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos T CD8-positivos , COVID-19/prevención & control , Humanos , ARN Mensajero/genética , SARS-CoV-2 , Vacunación
2.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446392

RESUMEN

Hydroxylysine glycosylations are post-translational modifications (PTMs) essential for the maturation and homeostasis of fibrillar and non-fibrillar collagen molecules. The multifunctional collagen lysyl hydroxylase 3 (LH3/PLOD3) and the collagen galactosyltransferase GLT25D1 are the human enzymes that have been identified as being responsible for the glycosylation of collagen lysines, although a precise description of the contribution of each enzyme to these essential PTMs has not yet been provided in the literature. LH3/PLOD3 is thought to be capable of performing two chemically distinct collagen glycosyltransferase reactions using the same catalytic site: an inverting beta-1,O-galactosylation of hydroxylysines (Gal-T) and a retaining alpha-1,2-glucosylation of galactosyl hydroxylysines (Glc-T). In this work, we have combined indirect luminescence-based assays with direct mass spectrometry-based assays and molecular structure studies to demonstrate that LH3/PLOD3 only has Glc-T activity and that GLT25D1 only has Gal-T activity. Structure-guided mutagenesis confirmed that the Glc-T activity is defined by key residues in the first-shell environment of the glycosyltransferase catalytic site as well as by long-range contributions from residues within the same glycosyltransferase (GT) domain. By solving the molecular structures and characterizing the interactions and solving the molecular structures of human LH3/PLOD3 in complex with different UDP-sugar analogs, we show how these studies could provide insights for LH3/PLOD3 glycosyltransferase inhibitor development. Collectively, our data provide new tools for the direct investigation of collagen hydroxylysine PTMs and a comprehensive overview of the complex network of shapes, charges, and interactions that enable LH3/PLOD3 glycosyltransferase activities, expanding the molecular framework and facilitating an improved understanding and manipulation of glycosyltransferase functions in biomedical applications.


Asunto(s)
Glicosiltransferasas , Hidroxilisina , Humanos , Glicosiltransferasas/genética , Hidroxilisina/metabolismo , Glicosilación , Colágeno/metabolismo , Lisina/metabolismo
3.
J Struct Biol ; 213(1): 107696, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33493635

RESUMEN

The use of immunomodulatory agents for the treatment of cancer is gaining a growing biopharmaceutical interest. Antibody-cytokine fusion proteins, namely immunocytokines, represent a promising solution for the regulation of the immune system at the site of disease. The three-dimensional arrangement of these molecules can profoundly influence their biological activity and pharmacokinetic properties. Structural techniques might provide important insight in the 3D arrangement of immunocytokines. Here, we performed structure investigations on clinical grade fusion proteins L19-IL2, IL12-L19L19 and L19L19-IL2 to elucidate their quaternary organization. Crystallographic characterization of the common L19 antibody fragment at a resolution of 2.0-Å was combined with low-resolution studies of the full-length chimeric molecules using small-angle synchrotron X-ray scattering (SAXS) and negative stain electron microscopy. Characterization of the full-length quaternary structures of the immunocytokines in solution by SAXS consistently supported the diabody structure in the L19-IL2 immunocytokine and allowed generation of low-resolution models of the chimeric proteins L19L19-IL2 and IL12-L19L19. Comparison with 3D reconstructions obtained from negative-stain electron microscopy revealed marked flexibility associated to the linker regions connecting the cytokine and the antibody components of the chimeric proteins. Collectively, our results indicate that low-resolution molecular structure characterizations provide useful complementary insights for the quality control of immunocytokines, constituting a powerful tool to guide the design and the subsequent optimization steps towards clinical enhancement of these chimeric protein reagents.


Asunto(s)
Citocinas/química , Animales , Línea Celular Tumoral , Humanos , Ratones , Estructura Molecular , Proteínas Recombinantes de Fusión/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos
4.
Biochem Soc Trans ; 49(2): 855-866, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33704379

RESUMEN

Collagen is a major constituent of the extracellular matrix (ECM) that confers fundamental mechanical properties to tissues. To allow proper folding in triple-helices and organization in quaternary super-structures, collagen molecules require essential post-translational modifications (PTMs), including hydroxylation of proline and lysine residues, and subsequent attachment of glycan moieties (galactose and glucose) to specific hydroxylysine residues on procollagen alpha chains. The resulting galactosyl-hydroxylysine (Gal-Hyl) and less abundant glucosyl-galactosyl-hydroxylysine (Glc-Gal-Hyl) are amongst the simplest glycosylation patterns found in nature and are essential for collagen and ECM homeostasis. These collagen PTMs depend on the activity of specialized glycosyltransferase enzymes. Although their biochemical reactions have been widely studied, several key biological questions about the possible functions of these essential PTMs are still missing. In addition, the lack of three-dimensional structures of collagen glycosyltransferase enzymes hinders our understanding of the catalytic mechanisms producing this modification, as well as the impact of genetic mutations causing severe connective tissue pathologies. In this mini-review, we summarize the current knowledge on the biochemical features of the enzymes involved in the production of collagen glycosylations and the current state-of-the-art methods for the identification and characterization of this important PTM.


Asunto(s)
Colágeno/metabolismo , Glicosiltransferasas/metabolismo , Hidroxilisina/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Colágeno/química , Glicosilación , Humanos , Hidroxilisina/química , Modelos Químicos , Estructura Molecular , Especificidad por Sustrato
5.
EMBO J ; 35(10): 1133-49, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27013439

RESUMEN

Regulators of complement activation (RCA) inhibit complement-induced immune responses on healthy host tissues. We present crystal structures of human RCA (MCP, DAF, and CR1) and a smallpox virus homolog (SPICE) bound to complement component C3b. Our structural data reveal that up to four consecutive homologous CCP domains (i-iv), responsible for inhibition, bind in the same orientation and extended arrangement at a shared binding platform on C3b. Large sequence variations in CCP domains explain the diverse C3b-binding patterns, with limited or no contribution of some individual domains, while all regulators show extensive contacts with C3b for the domains at the third site. A variation of ~100° rotation around the longitudinal axis is observed for domains binding at the fourth site on C3b, without affecting the overall binding mode. The data suggest a common evolutionary origin for both inhibitory mechanisms, called decay acceleration and cofactor activity, with variable C3b binding through domains at sites ii, iii, and iv, and provide a framework for understanding RCA disease-related mutations and immune evasion.


Asunto(s)
Complemento C3b/química , Complemento C3b/metabolismo , Sitios de Unión , Antígenos CD55/química , Antígenos CD55/metabolismo , Activación de Complemento , Humanos , Proteína Cofactora de Membrana/química , Proteína Cofactora de Membrana/metabolismo , Dominios Proteicos , Receptores de Complemento 3b/química , Receptores de Complemento 3b/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo
6.
J Med Genet ; 56(9): 629-638, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31129566

RESUMEN

BACKGROUND: Pathogenic PLOD3 variants cause a connective tissue disorder (CTD) that has been described rarely. We further characterise this CTD and propose a clinical diagnostic label to improve recognition and diagnosis of PLOD3-related disease. METHODS: Reported PLOD3 phenotypes were compared with known CTDs utilising data from three further individuals from a consanguineous family with a homozygous PLOD3 c.809C>T; p.(Pro270Leu) variant. PLOD3 mRNA expression in the developing embryo was analysed for tissue-specific localisation. Mouse microarray expression data were assessed for phylogenetic gene expression similarities across CTDs with overlapping clinical features. RESULTS: Key clinical features included ocular abnormalities with risk for retinal detachment, sensorineural hearing loss, reduced palmar creases, finger contractures, prominent knees, scoliosis, low bone mineral density, recognisable craniofacial dysmorphisms, developmental delay and risk for vascular dissection. Collated clinical features showed most overlap with Stickler syndrome with variable features of Ehlers-Danlos syndrome (EDS) and epidermolysis bullosa (EB). Human lysyl hydroxylase 3/PLOD3 expression was localised to the developing cochlea, eyes, skin, forelimbs, heart and cartilage, mirroring the clinical phenotype of this disorder. CONCLUSION: These data are consistent with pathogenic variants in PLOD3 resulting in a clinically distinct Stickler-like syndrome with vascular complications and variable features of EDS and EB. Early identification of PLOD3 variants would improve monitoring for comorbidities and may avoid serious adverse ocular and vascular outcomes.


Asunto(s)
Artritis/diagnóstico , Artritis/genética , Enfermedades del Tejido Conjuntivo/diagnóstico , Enfermedades del Tejido Conjuntivo/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Desprendimiento de Retina/diagnóstico , Desprendimiento de Retina/genética , Enfermedades Vasculares/diagnóstico , Adolescente , Adulto , Animales , Artritis/complicaciones , Hibridación Genómica Comparativa , Enfermedades del Tejido Conjuntivo/complicaciones , Modelos Animales de Enfermedad , Facies , Femenino , Expresión Génica , Estudios de Asociación Genética/métodos , Pérdida Auditiva Sensorineural/complicaciones , Humanos , Inmunohistoquímica , Masculino , Ratones , Modelos Moleculares , Mutación , Linaje , Fenotipo , Filogenia , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/química , Conformación Proteica , Desprendimiento de Retina/complicaciones , Relación Estructura-Actividad , Enfermedades Vasculares/etiología , Secuenciación del Exoma , Adulto Joven
7.
Proc Natl Acad Sci U S A ; 112(9): 2752-7, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25730864

RESUMEN

With its noncatalytic domains, DNA-binding regions, and a catalytic core targeting the histone tails, LSD1-CoREST (lysine-specific demethylase 1; REST corepressor) is an ideal model system to study the interplay between DNA binding and histone modification in nucleosome recognition. To this end, we covalently associated LSD1-CoREST to semisynthetic nucleosomal particles. This enabled biochemical and biophysical characterizations of nucleosome binding and structural elucidation by small-angle X-ray scattering, which was extensively validated through binding assays and site-directed mutagenesis of functional interfaces. Our results suggest that LSD1-CoREST functions as an ergonomic clamp that induces the detachment of the H3 histone tail from the nucleosomal DNA to make it available for capture by the enzyme active site. The key notion emerging from these studies is the inherently competitive nature of the binding interactions because nucleosome tails, chromatin modifiers, transcription factors, and DNA represent sites for multiple and often mutually exclusive interactions.


Asunto(s)
Proteínas Co-Represoras/química , ADN/química , Histona Demetilasas/química , Histonas/química , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Nucleosomas/química , Dominio Catalítico , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , ADN/genética , ADN/metabolismo , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Metilación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X
8.
Biochemistry ; 55(23): 3241-50, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27198181

RESUMEN

Burkholderia cenocepacia is a major concern among respiratory tract infections in cystic fibrosis patients. This pathogen is particularly difficult to treat because of its high level of resistance to the clinically relevant antimicrobial agents. In B. cenocepacia, the quorum sensing cell-cell communication system is involved in different processes that are important for bacterial virulence, such as biofilm formation and protease and siderophore production. Targeting the enzymes involved in this process represents a promising therapeutic approach. With the aim of finding effective quorum sensing inhibitors, we have determined the three-dimensional structure of B. cenocepacia diffusible factor synthase A, DfsA. This bifunctional crotonase (dehydratase/thioesterase) produces the characteristic quorum sensing molecule of B. cenocepacia, cis-2-dodecenoic acid or BDSF, starting from 3-hydroxydodecanoyl-acyl carrier protein. Unexpectedly, the crystal structure revealed the presence of a lipid molecule in the catalytic site of the enzyme, which was identified as dodecanoic acid. Our biochemical characterization shows that DfsA is able to use dodecanoyl-acyl carrier protein as a substrate, demonstrating that dodecanoic acid, the product of this reaction, is released very slowly from the DfsA active site, therefore acting as a DfsA inhibitor. This molecule shows an unprecedented conformational arrangement inside the DfsA active site. In contrast with previous hypotheses, our data illustrate how DfsA and closely related homologous enzymes can recognize long hydrophobic substrates without large conformational changes or assistance by additional regulator molecules. The elucidation of the substrate binding mode in DfsA provides the starting point for structure-based drug discovery studies targeting B. cenocepacia quorum sensing-assisted virulence.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/metabolismo , Ácidos Grasos/metabolismo , Percepción de Quorum , Secuencia de Aminoácidos , Cristalización , Cristalografía por Rayos X , Cromatografía de Gases y Espectrometría de Masas , Conformación Proteica , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato
9.
Proteins ; 84(6): 859-65, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27006087

RESUMEN

Hydroxysteroid dehydrogenases are of great interest as biocatalysts for transformations involving steroid substrates. They feature a high degree of stereo- and regio-selectivity, acting on a defined atom with a specific configuration of the steroid nucleus. The crystal structure of 7ß-hydroxysteroid dehydrogenase from Collinsella aerofaciens reveals a loop gating active-site accessibility, the bases of the specificity for NADP(+) , and the general architecture of the steroid binding site. Comparison with 7α-hydroxysteroid dehydrogenase provides a rationale for the opposite stereoselectivity. The presence of a C-terminal extension reshapes the substrate site of the ß-selective enzyme, possibly leading to an inverted orientation of the bound substrate. Proteins 2016; 84:859-865. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Actinobacteria/enzimología , Hidroxiesteroide Deshidrogenasas/química , Hidroxiesteroide Deshidrogenasas/metabolismo , Actinobacteria/química , Actinobacteria/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Cinética , Modelos Moleculares , NADP/metabolismo , Conformación Proteica , Estereoisomerismo , Especificidad por Sustrato
10.
Proteins ; 83(8): 1539-46, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26010010

RESUMEN

The recently discovered cytokinin (CK)-specific phosphoribohydrolase "Lonely Guy" (LOG) is a key enzyme of CK biosynthesis, converting inactive CK nucleotides into biologically active free bases. We have determined the crystal structures of LOG from Claviceps purpurea (cpLOG) and its complex with the enzymatic product phosphoribose. The structures reveal a dimeric arrangement of Rossmann folds, with the ligands bound to large pockets at the interface between cpLOG monomers. Structural comparisons highlight the homology of cpLOG to putative lysine decarboxylases. Extended sequence analysis enabled identification of a distinguishing LOG sequence signature. Taken together, our data suggest phosphoribohydrolase activity for several proteins of unknown function.


Asunto(s)
Aminohidrolasas/química , Carboxiliasas/química , Claviceps/enzimología , Proteínas Fúngicas/química , Modelos Moleculares , Secuencia de Aminoácidos , Aminohidrolasas/metabolismo , Carboxiliasas/metabolismo , Citocininas/metabolismo , Proteínas Fúngicas/metabolismo
12.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 3): 733-43, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24598742

RESUMEN

Human factor D (FD) is a self-inhibited thrombin-like serine proteinase that is critical for amplification of the complement immune response. FD is activated by its substrate through interactions outside the active site. The substrate-binding, or `exosite', region displays a well defined and rigid conformation in FD. In contrast, remarkable flexibility is observed in thrombin and related proteinases, in which Na(+) and ligand binding is implied in allosteric regulation of enzymatic activity through protein dynamics. Here, ensemble refinement (ER) of FD and thrombin crystal structures is used to evaluate structure and dynamics simultaneously. A comparison with previously published NMR data for thrombin supports the ER analysis. The R202A FD variant has enhanced activity towards artificial peptides and simultaneously displays active and inactive conformations of the active site. ER revealed pronounced disorder in the exosite loops for this FD variant, reminiscent of thrombin in the absence of the stabilizing Na(+) ion. These data indicate that FD exhibits conformational dynamics like thrombin, but unlike in thrombin a mechanism has evolved in FD that locks the unbound native state into an ordered inactive conformation via the self-inhibitory loop. Thus, ensemble refinement of X-ray crystal structures may represent an approach alternative to spectroscopy to explore protein dynamics in atomic detail.


Asunto(s)
Simulación de Dinámica Molecular , Dominio Catalítico/genética , Factor D del Complemento/antagonistas & inhibidores , Factor D del Complemento/química , Factor D del Complemento/genética , Cristalografía por Rayos X , Células HEK293 , Humanos , Mutación , Conformación Proteica , Proteolisis , Relación Estructura-Actividad , Especificidad por Sustrato/genética , Trombina/química , Trombina/genética
13.
J Exp Med ; 221(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953896

RESUMEN

Gain-of-function mutations in STING cause STING-associated vasculopathy with onset in infancy (SAVI) characterized by early-onset systemic inflammation, skin vasculopathy, and interstitial lung disease. Here, we report and characterize a novel STING variant (F269S) identified in a SAVI patient. Single-cell transcriptomics of patient bone marrow revealed spontaneous activation of interferon (IFN) and inflammatory pathways across cell types and a striking prevalence of circulating naïve T cells was observed. Inducible STING F269S expression conferred enhanced signaling through ligand-independent translocation of the protein to the Golgi, protecting cells from viral infections but preventing their efficient immune priming. Additionally, endothelial cell activation was promoted and further exacerbated by cytokine secretion by SAVI immune cells, resulting in inflammation and endothelial damage. Our findings identify STING F269S mutation as a novel pathogenic variant causing SAVI, highlight the importance of the crosstalk between endothelial and immune cells in the context of lung disease, and contribute to a better understanding of how aberrant STING activation can cause pathology.


Asunto(s)
Células Endoteliales , Proteínas de la Membrana , Humanos , Lactante , Células Endoteliales/metabolismo , Células Endoteliales/patología , Mutación con Ganancia de Función , Aparato de Golgi/metabolismo , Interferones/metabolismo , Interferones/genética , Enfermedades Pulmonares Intersticiales/genética , Enfermedades Pulmonares Intersticiales/patología , Enfermedades Pulmonares Intersticiales/inmunología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Transducción de Señal , Enfermedades Vasculares/genética , Enfermedades Vasculares/patología , Recién Nacido , Preescolar , Femenino
14.
Front Immunol ; 15: 1335998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469301

RESUMEN

Introduction: In autoimmune diseases, autoreactive B cells comprise only the 0.1-0.5% of total circulating B cells. However, current first-line treatments rely on non-specific and general suppression of the immune system, exposing patients to severe side effects. For this reason, identification of targeted therapies for autoimmune diseases is an unmet clinical need. Methods: Here, we designed a novel class of immunotherapeutic molecules, Bi-specific AutoAntigen-T cell Engagers (BiAATEs), as a potential approach for targeting the small subset of autoreactive B cells. To test this approach, we focused on a prototype autoimmune disease of the kidney, membranous nephropathy (MN), in which phospholipase A2 receptor (PLA2R) serves as primary nephritogenic antigen. Specifically, we developed a BiAATE consisting of the immunodominant Cysteine-Rich (CysR) domain of PLA2R and the single-chain variable fragment (scFv) of an antibody against the T cell antigen CD3, connected by a small flexible linker. Results: BiAATE creates an immunological synapse between autoreactive B cells bearing an CysR-specific surface Ig+ and T cells. Ex vivo, the BiAATE successfully induced T cell-dependent depletion of PLA2R-specific B cells isolated form MN patients, sparing normal B cells. Systemic administration of BiAATE to mice transgenic for human CD3 reduced anti-PLA2R antibody levels following active immunization with PLA2R. Discussion: Should this approach be confirmed for other autoimmune diseases, BiAATEs could represent a promising off-the-shelf therapy for precision medicine in virtually all antibody-mediated autoimmune diseases for which the pathogenic autoantigen is known, leading to a paradigm shift in the treatment of these diseases.


Asunto(s)
Autoantígenos , Glomerulonefritis Membranosa , Humanos , Animales , Ratones , Linfocitos T , Anticuerpos , Inmunoterapia , Poliésteres
15.
Trends Biochem Sci ; 33(4): 181-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18343668

RESUMEN

Three years after its discovery, lysine-specific demethylase 1 remains at the forefront of chromatin research. Its demethylase activity on Lys4 of histone H3 supports its role in gene repression. By contrast, the biochemical mechanisms underlying lysine-specific demethylase 1 involvement in transcriptional activation are not firmly established. Structural studies highlight a specific binding site for the histone H3 N-terminal tail and a catalytic machinery that is closely related to that of other flavin-dependent amine oxidases. These insights are crucial for the development of demethylation inhibitors. Furthermore, the exploration of putative non-histone substrates and potential signaling roles of hydrogen peroxide produced by the demethylation reaction could lead to new paradigms in chromatin biology.


Asunto(s)
Cromatina/metabolismo , Histonas/química , Oxidorreductasas N-Desmetilantes/fisiología , Oxígeno/metabolismo , Animales , Catálisis , Diseño de Fármacos , Flavinas/metabolismo , Regulación de la Expresión Génica , Histona Demetilasas , Histonas/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Modelos Biológicos , Oxidorreductasas N-Desmetilantes/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Transducción de Señal
16.
Methods Mol Biol ; 2627: 349-371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959458

RESUMEN

The recent advances in structural biology, combined with continuously increasing computational capabilities and development of advanced softwares, have drastically simplified the workflow for protein homology modeling. Modeling of individual proteins is nowadays quick and straightforward for a large variety of protein targets, thanks to guided pipelines relying on advanced computational tools and user-friendly interfaces, which have extended and promoted the use of modeling also to scientists not focusing on molecular structures of proteins. Nevertheless, construction of models of multi-protein complexes remains quite challenging for the non-experts, often due to the usage of specific procedures depending on the system under investigation and the need for experimental validation approaches to strengthen the generated output.In this chapter, we provide a brief overview of the approaches enabling generation of multi-protein complex models starting from homology models of individual protein components. Using real-life examples, we include two examples to guide the reader in the generation of homomeric and heteromeric protein models.


Asunto(s)
Proteínas , Programas Informáticos , Proteínas/química , Simulación de Dinámica Molecular , Conformación Proteica , Biología Computacional/métodos , Homología Estructural de Proteína
17.
Sci Rep ; 13(1): 14164, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644071

RESUMEN

The evolution of chemical signals is subject to environmental constraints. A multicomponent signal may combine semiochemical molecules with supporting compounds able to enhance communication efficacy. Carbonic anhydrases (CAs) are ubiquitous enzymes catalysing the reversible hydration of carbon dioxide, a reaction involved in a variety of physiological processes as it controls the chemical environment of the different tissues or cellular compartments, thus contributing to the overall system homeostasis. CA-IV isoform has been recently identified by mass spectrometry in the femoral gland secretions (FG) of the marine iguana, where it has been hypothesized to contribute to the chemical stability of the signal, by regulating blend pH. Lizards, indeed, use FG to communicate by delivering the waxy secretion on bare substrate, where it is exposed to environmental stressors. Therefore, we expect that some molecules in the mixture may play supporting functions, enhancing the stability of the chemical environment, or even conferring homeostatic properties to the blend. CA-IV may well represent an important candidate to this hypothesized supporting/homeostatic function, and, therefore, we can expect it to be common in FG secretions of other lizard species. To evaluate this prediction and definitely validate CA identity, we analysed FG secretions of eight species of wall lizards (genus Podarcis), combining mass spectrometry, immunoblotting, immunocytochemistry, and transmission electron microscopy. We demonstrate CA-IV to actually occur in the FG of seven out of the eight considered species, providing an immunochemistry validation of mass-spectrometry identifications, and localizing the enzyme within the secretion mass. The predicted structure of the identified CA is compatible with the known enzymatic activity of CA-IV, supporting the hypothesis that CA play a signal homeostasis function and opening to new perspective about the role of proteins in vertebrate chemical communication.


Asunto(s)
Anhidrasas Carbónicas , Lagartos , Animales , Anhidrasa Carbónica IV , Dióxido de Carbono , Catálisis
18.
World Allergy Organ J ; 16(11): 100836, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37965096

RESUMEN

Background: Mosquito bite is normally associated with mild allergic responses, but severe localized or systemic reactions are also possible. Reliable tools for the diagnosis of mosquito allergy are still unavailable. Here, we investigated the IgE response to 3 potential salivary allergens identified in the saliva of the tiger mosquito Aedes albopictus. Methods: Serum from 55 adult individuals (28 controls and 27 allergic people), were analysed using an in-house Enzyme Linked ImmunoSorbent Assay (ELISA) against the Salivary Gland Extract (SGE) and the recombinant proteins albD7l2 (Aed al 2), albAntigen5-3 (Aed al 13) and albLIPS-2 (Aed al 14). Results: Fifteen of the 27 (56%) individuals having hypersensitive reactions to mosquito bites had IgE serum levels recognizing SGE. Negative sera did not show detectable levels of IgE targeting the SGE from the most common sympatric mosquito Culex pipiens. Among the positive individuals, 2 subjects displayed IgE targeting Aed al 2 (13%), while IgE recognizing Aed al 13 and Aed al 14 were detected in ten (67%) and seven (47%) individuals, respectively. Two sera from non-hypersensitive subjects had detectable levels of IgE targeting Aed al 13, suggesting possible cross-reaction with the homologue salivary proteins of multiple mosquito species or, more generally, of hematophagous insects. Conclusions: Our results indicate that Aed al 13 and Aed al 14 hold the potential to be developed as tools for the diagnosis of allergy to Ae. albopictus bites. Such tools would facilitate epidemiological studies on tiger mosquito allergy in humans and might foster the development of further protein-based assays to investigate cross-species allergies.

19.
Sci Signal ; 16(795): eadd9539, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37490546

RESUMEN

Precise synapse formation is essential for normal functioning of the nervous system. Retinal photoreceptors establish selective contacts with bipolar cells, aligning the neurotransmitter release apparatus with postsynaptic signaling cascades. This involves transsynaptic assembly between the dystroglycan-dystrophin complex on the photoreceptor and the orphan receptor GPR179 on the bipolar cell, which is mediated by the extracellular matrix protein pikachurin (also known as EGFLAM). This complex plays a critical role in the synaptic organization of photoreceptors and signal transmission, and mutations affecting its components cause blinding disorders in humans. Here, we investigated the structural organization and molecular mechanisms by which pikachurin orchestrates transsynaptic assembly and solved structures of the human pikachurin domains by x-ray crystallography and of the GPR179-pikachurin complex by single-particle, cryo-electron microscopy. The structures reveal molecular recognition principles of pikachurin by the Cache domains of GPR179 and show how the interaction is involved in the transsynaptic alignment of the signaling machinery. Together, these data provide a structural basis for understanding the synaptic organization of photoreceptors and ocular pathology.


Asunto(s)
Proteínas de la Matriz Extracelular , Sinapsis , Humanos , Proteínas Portadoras/metabolismo , Microscopía por Crioelectrón , Proteínas de la Matriz Extracelular/metabolismo , Células Fotorreceptoras/metabolismo , Sinapsis/metabolismo
20.
Biomaterials ; 303: 122394, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38007919

RESUMEN

Nanodecoy systems based on analogues of viral cellular receptors assembled onto fluid lipid-based membranes of nano/extravescicles are potential new tools to complement classic therapeutic or preventive antiviral approaches. The need for lipid-based membranes for transmembrane receptor anchorage may pose technical challenges along industrial translation, calling for alternative geometries for receptor multimerization. Here we developed a semisynthetic self-assembling SARS-CoV-2 nanodecoy by multimerizing the biotin labelled virus cell receptor -ACE2- ectodomain onto a poly-avidin nanoparticle (NP) based on the Avidin-Nucleic-Acid-NanoASsembly-ANANAS. The ability of the assembly to prevent SARS-CoV-2 infection in human lung cells and the affinity of the ACE2:viral receptor-binding domain (RBD) interaction were measured at different ACE2:NP ratios. At ACE2:NP = 30, 90 % SARS-CoV-2 infection inhibition at ACE2 nanomolar concentration was registered on both Wuhan and Omicron variants, with ten-fold higher potency than the monomeric protein. Lower and higher ACE2 densities were less efficient suggesting that functional recognition between multi-ligand NPs and multi-receptor virus surfaces requires optimal geometrical relationships. In vivo studies in mice showed that the biodistribution and safety profiles of the nanodecoy are potentially suitable for preventing viral infection upon nasal instillation. Viral receptor multimerization using ANANAS is a convenient process which, in principle, could be rapidly adapted to counteract also other viral infections.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Animales , Humanos , Ratones , SARS-CoV-2/metabolismo , Avidina/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Ácidos Nucleicos/metabolismo , Distribución Tisular , Unión Proteica , Receptores Virales , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA