Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 94(2): 612-617, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34958218

RESUMEN

By its nature, a traditional potentiometric cell composed of an Ag/AgCl-based reference electrode and a solid-contact indicating electrode is not symmetric. This results in undesirable potential drifts in response to a common perturbation such as a temperature change of the sample. We propose here an approach to restore symmetry by constructing a cell with two identical solid-contact ISEs used as reference and indicating electrodes. In this arrangement, the reference electrode is immersed in a compartment containing a constant background of an ion of interest, while the indicating electrode is directly immersed in the sample solution. This approach was successfully demonstrated for a cell composed of nitrate-selective electrodes with the hydrophobic derivative of poly(3,4-ethylenedioxythiophene) as a transducer layer. In particular, the symmetric setup is shown to lower by 4-5 times the observed potential drift resulting from temperature changes between +25 and +5 °C.


Asunto(s)
Potenciometría , Electrodos , Interacciones Hidrofóbicas e Hidrofílicas
2.
Anal Chem ; 94(33): 11549-11556, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35968664

RESUMEN

In potentiometric sensing, the preparation of the electrodes preceding a measurement is often the most time-consuming step. Eliminating the conditioning process can significantly speed up the preparation procedure, but it can also compromise the need for proper pre-equilibration of the membrane. We propose here a symmetric setup to address this challenge with an identical indicator and reference elements measured against each other, thereby compensating for potential drift. This strategy allows one to achieve potentiometric measurements using non-conditioned all-solid-state ion-selective electrodes for the detection of nitrate and potassium ions with Nernstian response slopes and detection ranges identical to those of conventional systems. To establish symmetry, a set of solid-contact ion-selective electrodes placed in a reference cell is measured against a set of identical electrodes in a sample cell. By subtracting the potentials between the two cells, potential instabilities not directly relevant to the measuring sample are eliminated, giving minimal potential drifts and stable 5-day potential responses. The E0 value of the nitrate-selective electrodes in the symmetric setup had a standard deviation of just 3 mV for the 5-day period in contrast to 19 mV in the asymmetric system, clearly demonstrating the influence of the conditioning step which is almost eliminated in the former system. During the 20 h potential monitoring experiments, the drift dropped to below 0.3 mV/min in less than 6 min, as opposed to an average time of 35 min for the asymmetric system. The applicability of the proposed setup was successfully demonstrated with the measurement of nitrate in a river water sample, where a potential drift lower than 0.1 mV/min was reached in less than 5 min of first contact with solution.


Asunto(s)
Electrodos de Iones Selectos , Nitratos , Electrodos , Potasio , Potenciometría/métodos
3.
Anal Chim Acta ; 1239: 340652, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36628749

RESUMEN

Traditional pH glass electrodes are designed in a symmetrical manner to guarantee the most reliable and reproducible potentiometric measurements possible. Solid-contact and other pH probes not based on glass membranes are desirable because they allow for new types of applications, may be mass fabricated and less prone to breakage. Unfortunately, however, they introduce electrochemical asymmetry because the reference element used in the reference electrode compartment is now different. This work shows how symmetry may be restored with solid-contact pH probes, using a H+-selective ionophore-based polymeric membrane deposited on top of a conductive polymer (PEDOT-C14) as a transducer layer. The new cell implements a reference element that is composed of a similarly formulated pH probe immersed into a buffer solution and an Ag/AgCl element directly connected to a single-junction Ag/AgCl/3.0 M KCl reference electrode that is placed in contact with the sample solution. By implementing this design, the zero point of the solid-contact pH sensing system may be shifted to the conventional value of pH 7.0. The value of the zero point was experimentally confirmed as 6.96 ± 0.02 pH units at three different temperatures in the range from 5 to 25 °C. This symmetric solid-contact potentiometric cell gave a long-term potential drift of 48 ± 16 µV h-1, comparable to that of a combination pH glass electrode.


Asunto(s)
Polímeros , Electrodos , Potenciometría , Concentración de Iones de Hidrógeno
4.
Environ Sci Process Impacts ; 25(6): 1131-1132, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37278190

RESUMEN

Correction for 'A submersible probe with in-line calibration and a symmetrical reference element for continuous direct nitrate concentration measurements' by Tara Forrest et al., Environ. Sci.: Processes Impacts, 2023, 25, 519-530, https://doi.org/10.1039/D2EM00341D.

5.
Environ Sci Process Impacts ; 25(3): 519-530, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36655724

RESUMEN

Current methods to monitor nitrate levels in freshwater systems are outdated because they require expensive equipment and manpower. Punctual sampling on the field or at a fixed measuring station is still the accepted monitoring procedure and fails to provide real-time estimation of nitrate levels. Continuous information is of crucial importance to evaluate the health of natural aquatic systems, which can strongly suffer from a nitrogen imbalance. We present here a nitrate-selective potentiometric probe to measure the analyte continuously without requiring maintenance or high-power consumption. Owing to a simple design where the sensors are located directly in contact with the sample, the need for constant pump usage is eliminated, requiring just 0.7 mW power per day instead of 184 mW per day and per pump. It is estimated that with this power consumption, the setup can easily run for more than 97 h on four simple Li-ion batteries. A simple in-line one-point calibration step was implemented to allow for drift correction. At the same time, a symmetrical design was used involving a second nitrate probe as a reference electrode placed in the calibrant compartment. This, combined with an in situ calibration step, allows one to quantify nitrate ion concentrations directly, instead of yielding activities. The dependence on ion activity was removed by using the analysed sample spiked with nitrate as the calibrant. This results in essentially the same activity coefficients and additionally reduces junction potentials to a fraction of a millivolt. In addition, a symmetrical reference element served to compensate for fluctuations caused by environmental factors (temperature, convection, etc.) to achieve improved stability and signal reproducibility compared to a traditional Ag/AgCl based reference electrode. The final prototype was deployed in the Arve River in Geneva for 75 h without requiring any intervention. The nitrate levels measured using the symmetrical reference element over this period were estimated at 44.0 ± 3.5 M and agreed well with the values obtained with ion chromatography (38.2 ± 2.1 µM) used as the reference method. Thanks to a modular sensing head the potentiometric sensors can be easily exchanged, making it possible to quantify other types of analytes and leading the way to a new monitoring strategy.


Asunto(s)
Agua Dulce , Nitratos , Nitratos/análisis , Calibración , Reproducibilidad de los Resultados , Agua Dulce/análisis , Potenciometría/métodos
6.
ACS Meas Sci Au ; 3(1): 45-52, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36817005

RESUMEN

Recent work has shown that ion-selective components may be transferred from nanoemulsions (NEs) to endow polymeric membranes with ion-selective sensing properties. This approach has also been used for nanopipette electrodes to achieve single-entity electrochemistry, thereby sensing the ion-selective response of single adhered nanospheres. To this date, however, the mechanism and rate of component transfer remain unclear. We study here the transfer of lipophilic ionic compounds from nanoemulsions into thin plasticized poly(vinyl chloride) (PVC-DOS) films by chronoamperometry and quartz crystal microbalance. Thin-film cyclic coulovoltammetry measurements serve to quantify the uptake of lipophilic species into blank PVC-DOS membranes. Electrochemical quartz crystal microbalance data indicate that the transfer of the emulsion components is insignificant, ruling out simple coalescence with the membrane film. Ionophores and ion-exchangers are shown to transfer into the membrane at rates that correlate with their lipophilicity if mass transport is not rate-limiting, which is the case with more lipophilic compounds (calcium and sodium ionophores). On the other hand, with less lipophilic compounds (valinomycin and cation-exchanger salts), transfer rates are limited by mass transport. This is confirmed with rotating disk electrode experiments in which a linear relationship between the diffusion layer thickness and current is observed. The data suggests that once the nanoemulsion container approaches the membrane surface, transfer of components occur by a three-phase partition mechanism where the aqueous phase serves as a kinetic barrier. The results help better understand and quantify the interaction between nanoemulsions and ion-selective membranes and predict membrane doping rates for a range of components.

7.
Sci Rep ; 12(1): 11114, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773410

RESUMEN

Studies of microbiota reveal inter-relationships between the microbiomes of the gut and lungs. This relationship may influence the progression of lung disease, particularly in patients with cystic fibrosis (CF), who often experience extraoesophageal reflux (EOR). Despite identifying this relationship, it is not well characterised. Our hypothesis is that the gastric and lung microbiomes in CF are related, with the potential for aerodigestive pathophysiology. We evaluated gastric and sputum bacterial communities by culture and 16S rRNA gene sequencing in 13 CF patients. Impacts of varying levels of bile acids, pepsin and pH on patient isolates of Pseudomonas aeruginosa (Pa) were evaluated. Clonally related strains of Pa and NTM were identified in gastric and sputum samples from patients with symptoms of EOR. Bacterial diversity was more pronounced in sputa compared to gastric juice. Gastric and lung bile and pepsin levels were associated with Pa biofilm formation. Analysis of the aerodigestive microbiomes of CF patients with negative sputa indicates that the gut can be a reservoir of Pa and NTM. This combined with the CF patient's symptoms of reflux and potential aspiration, highlights the possibility of communication between microorganisms of the gut and the lungs. This phenomenon merits further research.


Asunto(s)
Fibrosis Quística , Reflujo Gastroesofágico , Microbiota , Bacterias , Bilis , Fibrosis Quística/microbiología , Jugo Gástrico/microbiología , Reflujo Gastroesofágico/complicaciones , Humanos , Pulmón/microbiología , Microbiota/genética , Pepsina A , Pseudomonas aeruginosa/genética , ARN Ribosómico 16S/genética , Esputo/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA