Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 98(3): 1627-1738, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29873596

RESUMEN

The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.


Asunto(s)
Angiotensina II/metabolismo , Receptores de Angiotensina/metabolismo , Transducción de Señal , Adipocitos/metabolismo , Animales , Vasos Sanguíneos/metabolismo , Encéfalo/metabolismo , Cardiopatías/metabolismo , Humanos , Inflamación/metabolismo , Riñón/metabolismo , Enfermedades Renales/metabolismo
2.
Physiol Rev ; 96(3): 1025-1069, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33003261

RESUMEN

The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.

3.
Am J Physiol Heart Circ Physiol ; 318(5): H1162-H1175, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32216616

RESUMEN

Nitric oxide (NO) and S-nitrosothiol (SNO) are considered cardio- and vasoprotective substances. We now understand that one mechanism in which NO/SNOs provide cardiovascular protection is through their direct inhibition of cardiac G protein-coupled receptor (GPCR) kinase 2 (GRK2) activity via S-nitrosylation of GRK2 at cysteine 340 (C340). This maintains GPCR homeostasis, including ß-adrenergic receptors, through curbing receptor GRK2-mediated desensitization. Previously, we have developed a knockin mouse (GRK2-C340S) where endogenous GRK2 is resistant to dynamic S-nitrosylation, which led to increased GRK2 desensitizing activity. This unchecked regulation of cardiac GRK2 activity resulted in significantly more myocardial damage after ischemic injury that was resistant to NO-mediated cardioprotection. Although young adult GRK2-C340S mice show no overt phenotype, we now report that as these mice age, they develop significant cardiovascular dysfunction due to the loss of SNO-mediated GRK2 regulation. This pathological phenotype is apparent as early as 12 mo of age and includes reduced cardiac function, increased cardiac perivascular fibrosis, and maladaptive cardiac hypertrophy, which are common maladies found in patients with cardiovascular disease (CVD). There are also vascular reactivity and aortic abnormalities present in these mice. Therefore, our data demonstrate that a chronic and global increase in GRK2 activity is sufficient to cause cardiovascular remodeling and dysfunction, likely due to GRK2's desensitizing effects in several tissues. Because GRK2 levels have been reported to be elevated in elderly CVD patients, GRK2-C340 mice can give insight into the aged-molecular landscape leading to CVD.NEW & NOTEWORTHY Research on G protein-coupled receptor kinase 2 (GRK2) in the setting of cardiovascular aging is largely unknown despite its strong established functions in cardiovascular physiology and pathophysiology. This study uses a mouse model of chronic GRK2 overactivity to further investigate the consequences of long-term GRK2 on cardiac function and structure. We report for the first time that chronic GRK2 overactivity was able to cause cardiac dysfunction and remodeling independent of surgical intervention, highlighting the importance of GRK activity in aged-related heart disease.


Asunto(s)
Envejecimiento/fisiología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Cardiopatías/etiología , Corazón/fisiología , Miocardio/metabolismo , Óxido Nítrico/metabolismo , Envejecimiento/metabolismo , Animales , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Corazón/crecimiento & desarrollo , Corazón/fisiopatología , Cardiopatías/metabolismo , Homeostasis , Masculino , Ratones , Mutación
4.
Circ Res ; 122(6): 877-902, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29700084

RESUMEN

Reactive oxygen species (ROS) are well known for their role in mediating both physiological and pathophysiological signal transduction. Enzymes and subcellular compartments that typically produce ROS are associated with metabolic regulation, and diseases associated with metabolic dysfunction may be influenced by changes in redox balance. In this review, we summarize the current literature surrounding ROS and their role in metabolic and inflammatory regulation, focusing on ROS signal transduction and its relationship to disease progression. In particular, we examine ROS production in compartments such as the cytoplasm, mitochondria, peroxisome, and endoplasmic reticulum and discuss how ROS influence metabolic processes such as proteasome function, autophagy, and general inflammatory signaling. We also summarize and highlight the role of ROS in the regulation metabolic/inflammatory diseases including atherosclerosis, diabetes mellitus, and stroke. In order to develop therapies that target oxidative signaling, it is vital to understand the balance ROS signaling plays in both physiology and pathophysiology, and how manipulation of this balance and the identity of the ROS may influence cellular and tissue homeostasis. An increased understanding of specific sources of ROS production and an appreciation for how ROS influence cellular metabolism may help guide us in the effort to treat cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Enfermedades Metabólicas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Humanos , Transducción de Señal
5.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354103

RESUMEN

Angiotensin II (AngII) has a crucial role in cardiovascular pathologies, including endothelial inflammation and premature vascular aging. However, the precise molecular mechanism underlying aging-related endothelial inflammation induced by AngII remains elusive. Here, we have tested a hypothesis in cultured rat aortic endothelial cells (ECs) that the removal of AngII-induced senescent cells, preservation of proteostasis, or inhibition of mitochondrial fission attenuates the pro-inflammatory EC phenotype. AngII stimulation in ECs resulted in cellular senescence assessed by senescence-associated ß galactosidase activity. The number of ß galactosidase-positive ECs induced by AngII was attenuated by treatment with a senolytic drug ABT737 or the chemical chaperone 4-phenylbutyrate. Monocyte adhesion assay revealed that the pro-inflammatory phenotype in ECs induced by AngII was alleviated by these treatments. AngII stimulation also increased mitochondrial fission in ECs, which was mitigated by mitochondrial division inhibitor-1. Pretreatment with mitochondrial division inhibitor-1 attenuated AngII-induced senescence and monocyte adhesion in ECs. These findings suggest that mitochondrial fission and endoplasmic reticulum stress have causative roles in endothelial senescence-associated inflammatory phenotype induced by AngII exposure, thus providing potential therapeutic targets in age-related cardiovascular diseases.


Asunto(s)
Angiotensina II/farmacología , Células Endoteliales/citología , Mitocondrias/metabolismo , Monocitos/citología , Animales , Compuestos de Bifenilo/farmacología , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Monocitos/efectos de los fármacos , Nitrofenoles/farmacología , Fenotipo , Fenilbutiratos/farmacología , Piperazinas/farmacología , Proteostasis , Ratas , Sulfonamidas/farmacología , Células THP-1
6.
Am J Physiol Cell Physiol ; 316(5): C621-C631, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30726115

RESUMEN

Polymerase-δ-interacting protein 2 (Poldip2) controls a wide variety of cellular functions and vascular pathologies. To mediate these effects, Poldip2 interacts with numerous proteins and generates reactive oxygen species via the enzyme NADPH oxidase 4 (Nox4). We have previously shown that Poldip2 can activate the Rho family GTPase RhoA, another signaling node within the cell. In this study, we aimed to better understand how Poldip2 activates Rho family GTPases and the functions of the involved proteins in vascular smooth muscle cells (VSMCs). RhoA is activated by guanine nucleotide exchange factors. Using nucleotide-free RhoA (isolated from bacteria) to pulldown active RhoGEFs, we found that the RhoGEF epithelial cell transforming sequence 2 (Ect2) is activated by Poldip2. Ect2 is a critical RhoGEF for Poldip2-mediated RhoA activation, because siRNA against Ect2 prevented Poldip2-mediated RhoA activity (measured by rhotekin pulldowns). Surprisingly, we were unable to detect a direct interaction between Poldip2 and Ect2, as they did not coimmunoprecipitate. Nox4 is not required for Poldip2-driven Ect2 activation, as Poldip2 overexpression induced Ect2 activation in Nox4 knockout VSMCs similar to wild-type cells. However, antioxidant treatment blocked Poldip2-induced Ect2 activation. This indicates a novel reactive oxygen species-driven mechanism by which Poldip2 regulates Rho family GTPases. Finally, we examined the function of these proteins in VSMCs, using siRNA against Poldip2 or Ect2 and determined that Poldip2 and Ect2 are both essential for vascular smooth muscle cell cytokinesis and proliferation.


Asunto(s)
Músculo Liso Vascular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Animales , Proliferación Celular/fisiología , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/citología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley
7.
Annu Rev Pharmacol Toxicol ; 56: 627-53, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26566153

RESUMEN

Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.


Asunto(s)
Sistema Cardiovascular/metabolismo , Receptores ErbB/metabolismo , Transducción de Señal/fisiología , Activación Transcripcional/fisiología , Animales , Humanos
8.
J Neuroinflammation ; 16(1): 241, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31779628

RESUMEN

BACKGROUND: Sepsis-associated encephalopathy (SAE), a diffuse cerebral dysfunction in the absence of direct CNS infection, is associated with increased rates of mortality and morbidity in patients with sepsis. Increased cytokine production and disruption of the blood-brain barrier (BBB) are implicated in the pathogenesis of SAE. The induction of pro-inflammatory mediators is driven, in part, by activation of NF-κΒ. Lipopolysaccharide (LPS), an endotoxin produced by gram-negative bacteria, potently activates NF-κΒ and its downstream targets, including cyclooxygenase-2 (Cox-2). Cox-2 catalyzes prostaglandin synthesis and in the brain prostaglandin, E2 is capable of inducing endothelial permeability. Depletion of polymerase δ-interacting protein 2 (Poldip2) has previously been reported to attenuate BBB disruption, possibly via regulation of NF-κΒ, in response to ischemic stroke. Here we investigated Poldip2 as a novel regulator of NF-κΒ/cyclooxygenase-2 signaling in an LPS model of SAE. METHODS: Intraperitoneal injections of LPS (18 mg/kg) were used to induce BBB disruption in Poldip2+/+ and Poldip2+/- mice. Changes in cerebral vascular permeability and the effect of meloxicam, a selective Cox-2 inhibitor, were assessed by Evans blue dye extravasation. Cerebral cortices of Poldip2+/+ and Poldip2+/- mice were further evaluated by immunoblotting and ELISA. To investigate the role of endothelial Poldip2, immunofluorescence microscopy and immunoblotting were performed to study the effect of siPoldip2 on LPS-mediated NF-κΒ subunit p65 translocation and Cox-2 induction in rat brain microvascular endothelial cells. Finally, FITC-dextran transwell assay was used to assess the effect of siPoldip2 on LPS-induced endothelial permeability. RESULTS: Heterozygous deletion of Poldip2 conferred protection against LPS-induced BBB permeability. Alterations in Poldip2+/+ BBB integrity were preceded by induction of Poldip2, p65, and Cox-2, which was not observed in Poldip2+/- mice. Consistent with these findings, prostaglandin E2 levels were significantly elevated in Poldip2+/+ cerebral cortices compared to Poldip2+/- cortices. Treatment with meloxicam attenuated LPS-induced BBB permeability in Poldip2+/+ mice, while having no significant effect in Poldip2+/- mice. Moreover, silencing of Poldip2 in vitro blocked LPS-induced p65 nuclear translocation, Cox-2 expression, and endothelial permeability. CONCLUSIONS: These data suggest Poldip2 mediates LPS-induced BBB disruption by regulating NF-κΒ subunit p65 activation and Cox-2 and prostaglandin E2 induction. Consequently, targeted inhibition of Poldip2 may provide clinical benefit in the prevention of sepsis-induced BBB disruption.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/metabolismo , Encefalopatía Asociada a la Sepsis/metabolismo , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Permeabilidad Capilar/efectos de los fármacos , Permeabilidad Capilar/fisiología , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , FN-kappa B/metabolismo , Proteínas Nucleares/genética , Permeabilidad , Encefalopatía Asociada a la Sepsis/genética , Encefalopatía Asociada a la Sepsis/patología
9.
Clin Sci (Lond) ; 133(2): 321-334, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30622219

RESUMEN

Acute respiratory distress syndrome (ARDS) in a deadly disease that can be brought on by endotoxins such as lipopolysaccharide (LPS). ARDS is characterized by vascular permeability, a severe inflammatory response, lung leukocyte infiltration, and resultant lung edema. Polymerase δ-interacting protein 2 (Poldip2) is a novel regulator of blood-brain barrier permeability; however, its role in regulating lung permeability and vascular inflammation is unknown. Here, the role of Poldip2 in regulating vascular permeability and inflammation in a mouse model of ARDS was assessed. Heterozygous deletion of Poldip2 was found to reduce LPS-induced mortality within 20 h, lung inflammatory signaling, and leukocyte infiltration. Moreover, reduced Poldip2-suppressed LP-induced vascular cell adhesion molecule (VCAM)-1 induction, leukocyte recruitment, and mitochondrial reactive oxygen species (ROS) production in vitro These data indicate that Poldip2 is an important regulator of the debilitating consequences of ARDS, potentially through the regulation of mitochondrial ROS-induced inflammatory signaling. Consequently, inhibition of Poldip2 may be a viable option for therapeutic discovery moving forward.


Asunto(s)
Permeabilidad Capilar , Células Endoteliales/metabolismo , Pulmón/irrigación sanguínea , Proteínas Mitocondriales/deficiencia , Proteínas Nucleares/deficiencia , Edema Pulmonar/prevención & control , Síndrome de Dificultad Respiratoria/metabolismo , Vasculitis/prevención & control , Animales , Adhesión Celular , Técnicas de Cocultivo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Humanos , Leucocitos/metabolismo , Leucocitos/patología , Masculino , Ratones Endogámicos C57BL , Proteínas Mitocondriales/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Edema Pulmonar/genética , Edema Pulmonar/metabolismo , Edema Pulmonar/patología , Especies Reactivas de Oxígeno/metabolismo , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/patología , Transducción de Señal , Células THP-1 , Molécula 1 de Adhesión Celular Vascular/metabolismo , Vasculitis/genética , Vasculitis/metabolismo , Vasculitis/patología
10.
Pharmacol Res ; 125(Pt A): 4-13, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28527699

RESUMEN

The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the ß-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system.


Asunto(s)
Sistema Cardiovascular/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas de Unión al GTP/metabolismo , Humanos , Sistema Renina-Angiotensina/fisiología , beta-Arrestinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA