Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 15(5): e1007692, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31071195

RESUMEN

Pathogenic yeasts and fungi are an increasing global healthcare burden, but discovery of novel antifungal agents is slow. The mycoparasitic yeast Saccharomycopsis schoenii was recently demonstrated to be able to kill the emerging multi-drug resistant yeast pathogen Candida auris. However, the molecular mechanisms involved in the predatory activity of S. schoenii have not been explored. To this end, we de novo sequenced, assembled and annotated a draft genome of S. schoenii. Using proteomics, we confirmed that Saccharomycopsis yeasts have reassigned the CTG codon and translate CTG into serine instead of leucine. Further, we confirmed an absence of all genes from the sulfate assimilation pathway in the genome of S. schoenii, and detected the expansion of several gene families, including aspartic proteases. Using Saccharomyces cerevisiae as a model prey cell, we honed in on the timing and nutritional conditions under which S. schoenii kills prey cells. We found that a general nutrition limitation, not a specific methionine deficiency, triggered predatory activity. Nevertheless, by means of genome-wide transcriptome analysis we observed dramatic responses to methionine deprivation, which were alleviated when S. cerevisiae was available as prey, and therefore postulate that S. schoenii acquired methionine from its prey cells. During predation, both proteomic and transcriptomic analyses revealed that S. schoenii highly upregulated and translated aspartic protease genes, probably used to break down prey cell walls. With these fundamental insights into the predatory behavior of S. schoenii, we open up for further exploitation of this yeast as a biocontrol yeast and/or source for novel antifungal agents.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Proteoma/análisis , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomycopsis/crecimiento & desarrollo , Transcriptoma , Animales , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Metionina/deficiencia , Conducta Predatoria , Saccharomyces cerevisiae/genética , Saccharomycopsis/genética , Saccharomycopsis/metabolismo
2.
Appl Microbiol Biotechnol ; 103(7): 3135-3152, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30830251

RESUMEN

Owing to their unique potential to ferment carbohydrates, both homo- and heterofermentative lactic acid bacteria (LAB) are widely used in the food industry. Deciphering the genetic basis that determine the LAB fermentation type, and hence carbohydrate utilization, is paramount to optimize LAB industrial processes. Deep sequencing of 24 LAB species and comparison with 32 publicly available genome sequences provided a comparative data set including five major LAB genera for further analysis. Phylogenomic reconstruction confirmed Leuconostoc and Pediococcus species as independently emerging from the Lactobacillus genus, within one of the three phylogenetic clades identified. These clades partially grouped LABs according to their fermentation types, suggesting that some metabolic capabilities were independently acquired during LAB evolution. In order to apply a genome-wide association study (GWAS) at the multigene family level, utilization of 49 carbohydrates was also profiled for these 56 LAB species. GWAS results indicated that obligately heterofermentative species lack 1-phosphofructokinase, required for D-mannose degradation in the homofermentative pathway. Heterofermentative species were found to often contain the araBAD operon, involved in L-arabinose degradation, which is important for heterofermentation. Taken together, our results provide helpful insights into the genetic determinants of LAB carbohydrate metabolism, and opens for further experimental research, aiming at validating the role of these candidate genes for industrial applications.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Estudios de Asociación Genética , Genoma Bacteriano , Lactobacillales/genética , Fermentación , Microbiología de Alimentos , Secuenciación de Nucleótidos de Alto Rendimiento , Lactobacillales/fisiología , Lactobacillus/enzimología , Lactobacillus/genética , Manosa/metabolismo , Fosfofructoquinasa-1/metabolismo , Filogenia
3.
Metab Eng ; 47: 73-82, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29534903

RESUMEN

Most microbial species, including model eukaryote Saccharomyces cerevisiae, possess genetic capability to utilize many alternative nutrient sources. Yet, it remains an open question whether these manifest into assimilatory phenotypes. Despite possessing all necessary pathways, S. cerevisiae grows poorly or not at all when glycerol is the sole carbon source. Here we discover, through multiple evolved lineages, genetic determinants underlying glycerol catabolism and the associated fitness trade-offs. Most evolved lineages adapted through mutations in the HOG pathway, but showed hampered osmotolerance. In the other lineages, we find that only three mutations cause the improved phenotype. One of these contributes counter-intuitively by decoupling the TCA cycle from oxidative phosphorylation, and thereby hampers ethanol utilization. Transcriptomics, proteomics and metabolomics analysis of the re-engineered strains affirmed the causality of the three mutations at molecular level. Introduction of these mutations resulted in improved glycerol utilization also in industrial strains. Our findings not only have a direct relevance for improving glycerol-based bioprocesses, but also illustrate how a metabolic pathway can remain unexploited due to fitness trade-offs in other, ecologically important, traits.


Asunto(s)
Evolución Molecular Dirigida , Glicerol/metabolismo , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Anal Chem ; 89(17): 8738-8747, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28727413

RESUMEN

Absolute quantification of free intracellular metabolites is a valuable tool in both pathway discovery and metabolic engineering. In this study, we conducted a comprehensive examination of different hot and cold combined quenching/extraction approaches to extract and quantify intracellular metabolites of Pseudomonas taiwanensis (P. taiwanensis) VLB120 to provide a useful reference data set of absolute intracellular metabolite concentrations. The suitability of commonly used metabolomics tools including a pressure driven fast filtration system followed by combined quenching/extraction techniques (such as cold methanol/acetonitrile/water, hot water, and boiling ethanol/water, as well as cold ethanol/water) were tested and evaluated for P. taiwanensis VLB120 metabolome analysis. In total 94 out of 107 detected intracellular metabolites were quantified using an isotope-ratio-based approach. The quantified metabolites include amino acids, nucleotides, central carbon metabolism intermediates, redox cofactors, and others. The acquired data demonstrate that the pressure driven fast filtration approach followed by boiling ethanol quenching/extraction is the most adequate technique for P. taiwanensis VLB120 metabolome analysis based on quenching efficiency, extraction yields of metabolites, and experimental reproducibility.


Asunto(s)
Metaboloma , Metabolómica/métodos , Pseudomonas/química , Extracción en Fase Sólida/métodos , Acetonitrilos/química , Frío , Etanol/química , Calor , Metanol/química , Pseudomonas/fisiología , Solventes/química , Agua/química
5.
Biotechnol Bioeng ; 114(11): 2528-2538, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28688186

RESUMEN

Microbial production of plant derived, biologically active compounds has the potential to provide economic and ecologic alternatives to existing low productive, plant-based processes. Current production of the pharmacologically active cyclic triterpenoid betulinic acid is realized by extraction from the bark of plane tree or birch. Here, we reengineered the reported betulinic acid pathway into Saccharomyces cerevisiae and used this novel strain to develop efficient fermentation and product purification methods. Fed-batch cultivations with ethanol excess, using either an ethanol-pulse feed or controlling a constant ethanol concentration in the fermentation medium, significantly enhanced production of betulinic acid and its triterpenoid precursors. The beneficial effect of excess ethanol was further exploited in nitrogen-limited resting cell fermentations, yielding betulinic acid concentrations of 182 mg/L, and total triterpenoid concentrations of 854 mg/L, the highest concentrations reported so far. Purification of lupane-type triterpenoids with high selectivity and yield was achieved by solid-liquid extraction without prior cell disruption using polar aprotic solvents such as acetone or ethyl acetate and subsequent precipitation with strong acids. This study highlights the potential of microbial production of plant derived triterpenoids in S. cerevisiae by combining metabolic and process engineering.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Etanol/metabolismo , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/fisiología , Triterpenos/aislamiento & purificación , Triterpenos/metabolismo , Reactores Biológicos/microbiología , Fermentación/fisiología , Redes y Vías Metabólicas/genética , Triterpenos Pentacíclicos , Saccharomyces cerevisiae/citología , Ácido Betulínico
6.
FEMS Yeast Res ; 16(7)2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27609600

RESUMEN

Fourteen indigenous Saccharomyces cerevisiae strains isolated from the barks of three tree species located in the Atlantic Rain Forest and Cerrado biomes in Brazil were genetically and physiologically compared to laboratory strains and to strains from the Brazilian fuel ethanol industry. Although no clear correlation could be found either between phenotype and isolation spot or between phenotype and genomic lineage, a set of indigenous strains with superior industrially relevant traits over commonly known industrial and laboratory strains was identified: strain UFMG-CM-Y257 has a very high specific growth rate on sucrose (0.57 ± 0.02 h-1), high ethanol yield (1.65 ± 0.02 mol ethanol mol hexose equivalent-1), high ethanol productivity (0.19 ± 0.00 mol L-1 h-1), high tolerance to acetic acid (10 g L-1) and to high temperature (40°C). Strain UFMG-CM-Y260 displayed high ethanol yield (1.67 ± 0.13 mol ethanol mol hexose equivalent-1), high tolerance to ethanol and to low pH, a trait which is important for non-aseptic industrial processes. Strain UFMG-CM-Y267 showed high tolerance to acetic acid and to high temperature (40°C), which is of particular interest to second generation industrial processes.


Asunto(s)
Biodiversidad , Microbiología Industrial/métodos , Saccharomyces cerevisiae/aislamiento & purificación , Saccharomyces cerevisiae/fisiología , Ácido Acético/toxicidad , Brasil , Tolerancia a Medicamentos , Etanol/metabolismo , Calor , Saccharomyces cerevisiae/clasificación , Sacarosa/metabolismo , Árboles/microbiología
7.
Microb Cell Fact ; 15: 53, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26980206

RESUMEN

BACKGROUND: In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3-hydroxypropionic acid (3HP), which can be produced by microbial fermentation. For an economically viable process 3HP must be produced at high titer, rate and yield and preferably at low pH to minimize downstream processing costs. RESULTS: Here we describe the metabolic engineering of baker's yeast Saccharomyces cerevisiae for biosynthesis of 3HP via a malonyl-CoA reductase (MCR)-dependent pathway. Integration of multiple copies of MCR from Chloroflexus aurantiacus and of phosphorylation-deficient acetyl-CoA carboxylase ACC1 genes into the genome of yeast increased 3HP titer fivefold in comparison with single integration. Furthermore we optimized the supply of acetyl-CoA by overexpressing native pyruvate decarboxylase PDC1, aldehyde dehydrogenase ALD6, and acetyl-CoA synthase from Salmonella enterica SEacs (L641P). Finally we engineered the cofactor specificity of the glyceraldehyde-3-phosphate dehydrogenase to increase the intracellular production of NADPH at the expense of NADH and thus improve 3HP production and reduce formation of glycerol as by-product. The final strain produced 9.8 ± 0.4 g L(-1) 3HP with a yield of 13% C-mol C-mol(-1) glucose after 100 h in carbon-limited fed-batch cultivation at pH 5. The 3HP-producing strain was characterized by (13)C metabolic flux analysis and by transcriptome analysis, which revealed some unexpected consequences of the undertaken metabolic engineering strategy, and based on this data, future metabolic engineering directions are proposed. CONCLUSIONS: In this study, S. cerevisiae was engineered for high-level production of 3HP by increasing the copy numbers of biosynthetic genes and improving flux towards precursors and redox cofactors. This strain represents a good platform for further optimization of 3HP production and hence an important step towards potential commercial bio-based production of 3HP.


Asunto(s)
Ácido Láctico/análogos & derivados , Ingeniería Metabólica/métodos , Oxidorreductasas/metabolismo , Saccharomyces cerevisiae , Chloroflexus/enzimología , Chloroflexus/genética , Regulación Fúngica de la Expresión Génica , Ácido Láctico/biosíntesis , Redes y Vías Metabólicas , Organismos Modificados Genéticamente , Oxidación-Reducción , Oxidorreductasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Salmonella enterica/enzimología , Salmonella enterica/genética
8.
Metab Eng ; 31: 84-93, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26192693

RESUMEN

Plant secondary metabolites are an underutilized pool of bioactive molecules for applications in the food, pharma and nutritional industries. One such molecule is fisetin, which is present in many fruits and vegetables and has several potential health benefits, including anti-cancer, anti-viral and anti-aging activity. Moreover, fisetin has recently been shown to prevent Alzheimer's disease in mice and to prevent complications associated with diabetes type I. Thus far the biosynthetic pathway of fisetin in plants remains elusive. Here, we present the heterologous assembly of a novel fisetin pathway in Escherichia coli. We propose a novel biosynthetic pathway from the amino acid, tyrosine, utilizing nine heterologous enzymes. The pathway proceeds via the synthesis of two flavanones never produced in microorganisms before--garbanzol and resokaempferol. We show for the first time a functional biosynthetic pathway and establish E. coli as a microbial platform strain for the production of fisetin and related flavonols.


Asunto(s)
Escherichia coli/metabolismo , Flavonoides/biosíntesis , Flavanonas/biosíntesis , Flavonoides/química , Flavonoles , Tirosina/metabolismo
9.
Metab Eng ; 27: 57-64, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25447643

RESUMEN

Microbial fermentation of renewable feedstocks into plastic monomers can decrease our fossil dependence and reduce global CO2 emissions. 3-Hydroxypropionic acid (3HP) is a potential chemical building block for sustainable production of superabsorbent polymers and acrylic plastics. With the objective of developing Saccharomyces cerevisiae as an efficient cell factory for high-level production of 3HP, we identified the ß-alanine biosynthetic route as the most economically attractive according to the metabolic modeling. We engineered and optimized a synthetic pathway for de novo biosynthesis of ß-alanine and its subsequent conversion into 3HP using a novel ß-alanine-pyruvate aminotransferase discovered in Bacillus cereus. The final strain produced 3HP at a titer of 13.7±0.3gL(-1) with a 0.14±0.0C-molC-mol(-1) yield on glucose in 80h in controlled fed-batch fermentation in mineral medium at pH 5, and this work therefore lays the basis for developing a process for biological 3HP production.


Asunto(s)
Bacillus cereus , Proteínas Bacterianas , Ácido Láctico/análogos & derivados , Ingeniería Metabólica , Saccharomyces cerevisiae , beta-Alanina-Piruvato Transaminasa , Bacillus cereus/enzimología , Bacillus cereus/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Ácido Láctico/biosíntesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , beta-Alanina/genética , beta-Alanina/metabolismo , beta-Alanina-Piruvato Transaminasa/biosíntesis , beta-Alanina-Piruvato Transaminasa/genética
10.
Appl Environ Microbiol ; 81(13): 4458-76, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25911487

RESUMEN

Phenylalanine and tyrosine ammonia-lyases form cinnamic acid and p-coumaric acid, which are precursors of a wide range of aromatic compounds of biotechnological interest. Lack of highly active and specific tyrosine ammonia-lyases has previously been a limitation in metabolic engineering approaches. We therefore identified 22 sequences in silico using synteny information and aiming for sequence divergence. We performed a comparative in vivo study, expressing the genes intracellularly in bacteria and yeast. When produced heterologously, some enzymes resulted in significantly higher production of p-coumaric acid in several different industrially important production organisms. Three novel enzymes were found to have activity exclusively for phenylalanine, including an enzyme from the low-GC Gram-positive bacterium Brevibacillus laterosporus, a bacterial-type enzyme from the amoeba Dictyostelium discoideum, and a phenylalanine ammonia-lyase from the moss Physcomitrella patens (producing 230 µM cinnamic acid per unit of optical density at 600 nm [OD600]) in the medium using Escherichia coli as the heterologous host). Novel tyrosine ammonia-lyases having higher reported substrate specificity than previously characterized enzymes were also identified. Enzymes from Herpetosiphon aurantiacus and Flavobacterium johnsoniae resulted in high production of p-coumaric acid in Escherichia coli (producing 440 µM p-coumaric acid OD600 unit(-1) in the medium) and in Lactococcus lactis. The enzymes were also efficient in Saccharomyces cerevisiae, where p-coumaric acid accumulation was improved 5-fold over that in strains expressing previously characterized tyrosine ammonia-lyases.


Asunto(s)
Amoníaco-Liasas/metabolismo , Bacterias/enzimología , Bacterias/metabolismo , Hidrocarburos Aromáticos/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Amoníaco-Liasas/genética , Bacterias/genética , Expresión Génica , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN
11.
FEMS Yeast Res ; 15(8)2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26392044

RESUMEN

Green fluorescent proteins (GFPs) are widely used for visualization of proteins to track localization and expression dynamics. However, phenotypically important processes can operate at too low expression levels for routine detection, i.e. be overshadowed by autofluorescence noise. While GFP functions well in translational fusions, the use of tandem GFPs to amplify fluorescence signals is currently avoided in Saccharomyces cerevisiae and many other microorganisms due to the risk of loop-out by direct-repeat recombination. We increased GFP fluorescence by translationally fusing three different GFP variants, yeast-enhanced GFP, GFP+ and superfolder GFP to yield a sequence-diverged triple GFP molecule 3vGFP with 74-84% internal repeat identity. Unlike a single GFP, the brightness of 3vGFP allowed characterization of a weak promoter in S. cerevisiae. Utilizing 3vGFP, we further engineered a less leaky Cu(2+)-inducible promoter based on CUP1. The basal expression level of the new promoter was approximately 61% below the wild-type CUP1 promoter, thus expanding the absolute range of Cu(2+)-based gene control. The stability of 3vGFP towards direct-repeat recombination was assayed in S. cerevisiae cultured for 25 generations under strong and slightly toxic expression after which only limited reduction in fluorescence was detectable. Such non-recombinogenic GFPs can help quantify intracellular responses operating a low copy number in recombination-prone organisms.


Asunto(s)
Fusión Artificial Génica , Perfilación de la Expresión Génica/métodos , Genética Microbiana/métodos , Proteínas Fluorescentes Verdes/análisis , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Transcripción Genética , Inestabilidad Genómica , Proteínas Fluorescentes Verdes/genética , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética
12.
J Ind Microbiol Biotechnol ; 42(11): 1519-31, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26376869

RESUMEN

Saccharomyces cerevisiae is one of the key cell factories for production of chemicals and active pharmaceuticals. For large-scale fermentations, particularly in biorefinery applications, it is desirable to use stress-tolerant industrial strains. However, such strains are less amenable for metabolic engineering than the standard laboratory strains. To enable easy delivery and overexpression of genes in a wide range of industrial S. cerevisiae strains, we constructed a set of integrative vectors with long homology arms and dominant selection markers. The vectors integrate into previously validated chromosomal locations via double cross-over and result in homogenous stable expression of the integrated genes, as shown for several unrelated industrial strains. Cre-mediated marker rescue is possible for removing markers positioned on different chromosomes. To demonstrate the applicability of the presented vector set for metabolic engineering of industrial yeast, we constructed xylose-utilizing strains overexpressing xylose isomerase, xylose transporter and five genes of the pentose phosphate pathway.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Ingeniería Genética/métodos , Vectores Genéticos/genética , Saccharomyces cerevisiae/genética , Isomerasas Aldosa-Cetosa/genética , Isomerasas Aldosa-Cetosa/metabolismo , Cromosomas Fúngicos/genética , Intercambio Genético , Fermentación , Marcadores Genéticos/genética , Ingeniería Metabólica/métodos , Vía de Pentosa Fosfato/genética , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo
13.
Metab Eng ; 26: 57-66, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25263954

RESUMEN

Biologically produced 3-hydroxypropionic acid (3 HP) is a potential source for sustainable acrylates and can also find direct use as monomer in the production of biodegradable polymers. For industrial-scale production there is a need for robust cell factories tolerant to high concentration of 3 HP, preferably at low pH. Through adaptive laboratory evolution we selected S. cerevisiae strains with improved tolerance to 3 HP at pH 3.5. Genome sequencing followed by functional analysis identified the causal mutation in SFA1 gene encoding S-(hydroxymethyl)glutathione dehydrogenase. Based on our findings, we propose that 3 HP toxicity is mediated by 3-hydroxypropionic aldehyde (reuterin) and that glutathione-dependent reactions are used for reuterin detoxification. The identified molecular response to 3 HP and reuterin may well be a general mechanism for handling resistance to organic acid and aldehydes by living cells.


Asunto(s)
Evolución Molecular Dirigida/métodos , Escherichia coli/genética , Mejoramiento Genético/métodos , Glutatión/metabolismo , Ácido Láctico/análogos & derivados , Saccharomyces cerevisiae/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Relación Dosis-Respuesta a Droga , Tolerancia a Medicamentos/genética , Escherichia coli/efectos de los fármacos , Glutatión/genética , Ácido Láctico/administración & dosificación , Saccharomyces cerevisiae/efectos de los fármacos
14.
FEMS Yeast Res ; 14(2): 238-48, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24151867

RESUMEN

Development of strains for efficient production of chemicals and pharmaceuticals requires multiple rounds of genetic engineering. In this study, we describe construction and characterization of EasyClone vector set for baker's yeast Saccharomyces cerevisiae, which enables simultaneous expression of multiple genes with an option of recycling selection markers. The vectors combine the advantage of efficient uracil excision reaction-based cloning and Cre-LoxP-mediated marker recycling system. The episomal and integrative vector sets were tested by inserting genes encoding cyan, yellow, and red fluorescent proteins into separate vectors and analyzing for co-expression of proteins by flow cytometry. Cells expressing genes encoding for the three fluorescent proteins from three integrations exhibited a much higher level of simultaneous expression than cells producing fluorescent proteins encoded on episomal plasmids, where correspondingly 95% and 6% of the cells were within a fluorescence interval of Log10 mean ± 15% for all three colors. We demonstrate that selective markers can be simultaneously removed using Cre-mediated recombination and all the integrated heterologous genes remain in the chromosome and show unchanged expression levels. Hence, this system is suitable for metabolic engineering in yeast where multiple rounds of gene introduction and marker recycling can be carried out.


Asunto(s)
Cromosomas Fúngicos , Clonación Molecular/métodos , Mutagénesis Insercional , Saccharomyces cerevisiae/genética , Citometría de Flujo , Expresión Génica , Orden Génico , Genes Reporteros , Recombinación Homóloga , Plásmidos/genética
15.
N Biotechnol ; 82: 92-106, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-38788897

RESUMEN

Species of Saccharomyces genus have played an irreplaceable role in alcoholic beverage and baking industry for centuries. S. cerevisiae has also become an organism of choice for industrial production of alcohol and other valuable chemicals and a model organism shaping the rise of modern genetics and genomics in the past few decades. Today´s brewing industry faces challenges of decreasing consumption of traditional beer styles and increasing consumer demand for new styles, flavors and aromas. The number of currently used brewer's strains and their genetic diversity is yet limited and implementation of more genetic and phenotypic variation is seen as a solution to cope with the market challenges. This requires modification of current production strains or introduction of novel strains from other settings, e.g. industrial or wild habitats into the brewing industry. Due to legal regulation in many countries and negative customer perception of GMO organisms, the production of food and beverages requires non-GMO production organisms, whose development can be difficult and time-consuming. Here, we apply FIND-IT (Fast Identification of Nucleotide variants by DigITal PCR), an ultrafast genome-mining method, for isolation of novel yeast variants with varying flavor profiles. The FIND-IT method uses combination of random mutagenesis, droplet digital PCR with probes that target a specific desired mutation and a sub-isolation of the mutant clone. Such an approach allows the targeted identification and isolation of specific mutant strains with eliminated production of certain flavor and off-flavors and/or changes in the strain metabolism. We demonstrate that the technology is useful for the identification of loss-of function or gain of function mutations in unrelated industrial and wild strains differing in ploidy. Where no other phenotypic selection exists, this technology serves together with standard breeding techniques as a modern tool facilitating a modification of (brewer's) yeast strains leading to diversification of the product portfolio.


Asunto(s)
Cerveza , Ingeniería Metabólica , Saccharomyces , Cerveza/microbiología , Saccharomyces/genética , Saccharomyces/metabolismo , Aromatizantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
16.
Biotechnol Bioeng ; 109(7): 1798-807, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22252737

RESUMEN

Infection caused by methicillin-resistant Staphylococcus aureus (MRSA) is an increasing societal problem. Typically, glycopeptide antibiotics are used in the treatment of these infections. The most comprehensively studied glycopeptide antibiotic biosynthetic pathway is that of balhimycin biosynthesis in Amycolatopsis balhimycina. The balhimycin yield obtained by A. balhimycina is, however, low and there is therefore a need to improve balhimycin production. In this study, we performed genome sequencing, assembly and annotation analysis of A. balhimycina and further used these annotated data to reconstruct a genome-scale metabolic model for the organism. Here we generated an almost complete A. balhimycina genome sequence comprising 10,562,587 base pairs assembled into 2,153 contigs. The high GC-genome (∼ 69%) includes 8,585 open reading frames (ORFs). We used our integrative toolbox called SEQTOR for functional annotation and then integrated annotated data with biochemical and physiological information available for this organism to reconstruct a genome-scale metabolic model of A. balhimycina. The resulting metabolic model contains 583 ORFs as protein encoding genes (7% of the predicted 8,585 ORFs), 407 EC numbers, 647 metabolites and 1,363 metabolic reactions. During the analysis of the metabolic model, linear, quadratic and evolutionary programming algorithms using flux balance analysis (FBA), minimization of metabolic adjustment (MOMA), and OptGene, respectively were applied as well as phenotypic behavior and improved balhimycin production were simulated. The A. balhimycina model shows a good agreement between in silico data and experimental data and also identifies key reactions associated with increased balhimycin production. The reconstruction of the genome-scale metabolic model of A. balhimycina serves as a basis for physiological characterization. The model allows a rational design of engineering strategies for increasing balhimycin production in A. balhimycina and glycopeptide production in general.


Asunto(s)
Actinomycetales/genética , Actinomycetales/metabolismo , Antibacterianos/metabolismo , Vancomicina/análogos & derivados , Simulación por Computador , Genoma Bacteriano , Redes y Vías Metabólicas , Modelos Biológicos , Vancomicina/metabolismo
17.
Front Microbiol ; 13: 855736, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495724

RESUMEN

Lack of active export system often limits the industrial bio-based production processes accumulating the intracellular product and hence complexing the purification steps. L-lysine, an essential amino acid, is produced biologically in quantities exceeding two million tons per year; yet, L-lysine production is challenged by efficient export system at high titers during fermentation. To address this issue, new exporter candidates for efficient efflux of L-lysine are needed. Using metagenomic functional selection, we identified 58 genes encoded on 28 unique metagenomic fragments from cow gut microbiome library that improved L-lysine tolerance. These genes include a novel L-lysine transporter, belonging to a previously uncharacterized EamA superfamily, which is further in vivo characterized as L-lysine exporter using Xenopus oocyte expression system as well as Escherichia coli host. This novel exporter improved L-lysine tolerance in E. coli by 40% and enhanced yield, titer, and the specific production of L-lysine in an industrial Corynebacterium glutamicum strain by 7.8%, 9.5%, and 12%, respectively. Our approach allows the sequence-independent discovery of novel exporters and can be deployed to increase titers and productivity of toxicity-limited bioprocesses.

18.
Biotechnol Biofuels Bioprod ; 15(1): 22, 2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35219341

RESUMEN

BACKGROUND: Lignosulfonates are significant wood chemicals with a $700 million market, produced by sulfite pulping of wood. During the pulping process, spent sulfite liquor (SSL) is generated, which in addition to lignosulfonates contains hemicellulose-derived sugars-in case of hardwoods primarily the pentose sugar xylose. The pentoses are currently underutilized. If they could be converted into value-added chemicals, overall economic profitability of the process would increase. SSLs are typically very inhibitory to microorganisms, which presents a challenge for a biotechnological process. The aim of the present work was to develop a robust yeast strain able to convert xylose in SSL to carboxylic acids. RESULTS: The industrial strain Ethanol Red of the yeast Saccharomyces cerevisiae was engineered for efficient utilization of xylose in a Eucalyptus globulus lignosulfonate stream at low pH using CRISPR/Cas genome editing and adaptive laboratory evolution. The engineered strain grew in synthetic medium with xylose as sole carbon source with maximum specific growth rate (µmax) of 0.28 1/h. Selected evolved strains utilized all carbon sources in the SSL at pH 3.5 and grew with µmax between 0.05 and 0.1 1/h depending on a nitrogen source supplement. Putative genetic determinants of the increased tolerance to the SSL were revealed by whole genome sequencing of the evolved strains. In particular, four top-candidate genes (SNG1, FIT3, FZF1 and CBP3) were identified along with other gene candidates with predicted important roles, based on the type and distribution of the mutations across different strains and especially the best performing ones. The developed strains were further engineered for production of dicarboxylic acids (succinic and malic acid) via overexpression of the reductive branch of the tricarboxylic acid cycle (TCA). The production strain produced 0.2 mol and 0.12 mol of malic acid and succinic acid, respectively, per mol of xylose present in the SSL. CONCLUSIONS: The combined metabolic engineering and adaptive evolution approach provided a robust SSL-tolerant industrial strain that converts fermentable carbon content of the SSL feedstock into malic and succinic acids at low pH.in production yields reaching 0.1 mol and 0.065 mol per mol of total consumed carbon sources.. Moreover, our work suggests potential genetic background of the tolerance to the SSL stream pointing out potential gene targets for improving the tolerance to inhibitory industrial feedstocks.

19.
Sci Adv ; 8(34): eabq2266, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36001660

RESUMEN

Improved agricultural and industrial production organisms are required to meet the future global food demands and minimize the effects of climate change. A new resource for crop and microbe improvement, designated FIND-IT (Fast Identification of Nucleotide variants by droplet DigITal PCR), provides ultrafast identification and isolation of predetermined, targeted genetic variants in a screening cycle of less than 10 days. Using large-scale sample pooling in combination with droplet digital PCR (ddPCR) greatly increases the size of low-mutation density and screenable variant libraries and the probability of identifying the variant of interest. The method is validated by screening variant libraries totaling 500,000 barley (Hordeum vulgare) individuals and isolating more than 125 targeted barley gene knockout lines and miRNA or promoter variants enabling functional gene analysis. FIND-IT variants are directly applicable to elite breeding pipelines and minimize time-consuming technical steps to accelerate the evolution of germplasm.

20.
Front Genet ; 11: 582789, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240329

RESUMEN

Fermented foods and particularly beer have accompanied the development of human civilization for thousands of years. Saccharomyces cerevisiae, the dominant yeast in the production of alcoholic beverages, probably co-evolved with human activity. Considering that alcoholic fermentations emerged worldwide, the number of strains used in beer production nowadays is surprisingly low. Thus, the genetic diversity is often limited. This is among others related to the switch from a household brewing style to a more artisan brewing regime during the sixteenth century and latterly the development of single yeast isolation techniques at the Carlsberg Research Laboratory in 1883, resulting in process optimizations in the brewing industry. However, due to fierce competition within the beer market and the increasing demand for novel beer styles, diversification is becoming increasingly important. Moreover, the emergence of craft brewing has influenced big breweries to rediscover yeast as a significant contributor to a beer's aroma profile and realize that there is still room for innovation in the fermentation process. Here, we aim at giving a brief overview on how currently used S. cerevisiae brewing yeasts emerged and comment on the rationale behind replacing them with novel strains. We will present potential sources of yeasts that have not only been used in beer brewing before, including natural sources and sources linked to human activity but also an overlooked source, such as yeast culture collections. We will briefly comment on common yeast isolation techniques and finally touch on additional challenges for the brewing industry in replacing their current brewer's yeasts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA