Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Alzheimers Dement ; 17(3): 543-552, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33103819

RESUMEN

INTRODUCTION: Counteracting impaired brain glucose metabolism with ketones may improve cognition in mild cognitive impairment (MCI). METHODS: Cognition, plasma ketone response, and metabolic profile were assessed before and 6 months after supplementation with a ketogenic drink containing medium chain triglyceride (ketogenic medium chain triglyceride [kMCT]; 15 g twice/day; n = 39) or placebo (n = 44). RESULTS: Free and cued recall (Trial 1; P = .047), verbal fluency (categories; P = .024), Boston Naming Test (total correct answers; P = .033), and the Trail-Making Test (total errors; P = .017) improved significantly in the kMCT group compared to placebo (analysis of covariance; pre-intervention score, sex, age, education, and apolipoprotein E4 as covariates). Some cognitive outcomes also correlated positively with plasma ketones. Plasma metabolic profile and ketone response were unchanged. CONCLUSIONS: This kMCT drink improved cognitive outcomes in MCI, at least in part by increasing blood ketone level. These data support further assessment of MCI progression to Alzheimer's disease.


Asunto(s)
Bebidas , Cognición/fisiología , Disfunción Cognitiva/metabolismo , Dieta Cetogénica , Triglicéridos/metabolismo , Anciano , Femenino , Humanos , Cetonas/sangre , Cetonas/metabolismo , Masculino , Pruebas Neuropsicológicas/estadística & datos numéricos
2.
Alzheimers Dement ; 15(5): 625-634, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31027873

RESUMEN

INTRODUCTION: Unlike for glucose, uptake of the brain's main alternative fuel, ketones, remains normal in mild cognitive impairment (MCI). Ketogenic medium chain triglycerides (kMCTs) could improve cognition in MCI by providing the brain with more fuel. METHODS: Fifty-two subjects with MCI were blindly randomized to 30 g/day of kMCT or matching placebo. Brain ketone and glucose metabolism (quantified by positron emission tomography; primary outcome) and cognitive performance (secondary outcome) were assessed at baseline and 6 months later. RESULTS: Brain ketone metabolism increased by 230% for subjects on the kMCT (P < .001) whereas brain glucose uptake remained unchanged. Measures of episodic memory, language, executive function, and processing speed improved on the kMCT versus baseline. Increased brain ketone uptake was positively related to several cognitive measures. Seventy-five percent of participants completed the intervention. DISCUSSION: A dose of 30 g/day of kMCT taken for 6 months bypasses a significant part of the brain glucose deficit and improves several cognitive outcomes in MCI.


Asunto(s)
Encéfalo/metabolismo , Disfunción Cognitiva , Metabolismo Energético/fisiología , Glucosa/metabolismo , Cetonas , Anciano , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Femenino , Fluorodesoxiglucosa F18/metabolismo , Humanos , Cetonas/administración & dosificación , Cetonas/metabolismo , Masculino , Pruebas Neuropsicológicas/estadística & datos numéricos , Tomografía de Emisión de Positrones
3.
Front Plant Sci ; 14: 1132132, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844081

RESUMEN

Plants have to cope with a myriad of soilborne pathogens that affect crop production and food security. The complex interactions between the root system and microorganisms are determinant for the whole plant health. However, the knowledge regarding root defense responses is limited as compared to the aerial parts of the plant. Immune responses in roots appear to be tissue-specific suggesting a compartmentalization of defense mechanisms in these organs. The root cap releases cells termed root "associated cap-derived cells" (AC-DCs) or "border cells" embedded in a thick mucilage layer forming the root extracellular trap (RET) dedicated to root protection against soilborne pathogens. Pea (Pisum sativum) is the plant model used to characterize the composition of the RET and to unravel its function in root defense. The objective of this paper is to review modes of action of the RET from pea against diverse pathogens with a special focus on root rot disease caused by Aphanomyces euteiches, one of the most widely occurring and large-scale pea crop diseases. The RET, at the interface between the soil and the root, is enriched in antimicrobial compounds including defense-related proteins, secondary metabolites, and glycan-containing molecules. More especially arabinogalactan proteins (AGPs), a family of plant extracellular proteoglycans belonging to the hydroxyproline-rich glycoproteins were found to be particularly present in pea border cells and mucilage. Herein, we discuss the role of RET and AGPs in the interaction between roots and microorganisms and future potential developments for pea crop protection.

4.
Front Physiol ; 14: 1280191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869718

RESUMEN

Ketones are alternative energy substrates for the heart and kidney but no studies have investigated their metabolism simultaneously in both organs in humans. The present double tracer positron emission tomography (PET) study evaluated the organ distribution and basal kinetic rates of the radiolabeled ketone, 11C-acetoacetate (11C-AcAc), in the heart and kidney compared to 11C-acetate (11C-Ac), which is a well-validated metabolic radiotracer. Both tracers were highly metabolized by the left ventricle and the renal cortex. In the heart, kinetic rates were similar for both tracers. But in the renal cortex, uptake of 11C-Ac was higher compared to 11C-AcAc, while the reverse was observed for the clearance. Interestingly, infusion of 11C-AcAc led to a significantly delayed release of radioactivity in the renal medulla and pelvis, a phenomenon not observed with 11C-Ac. This suggests an equilibrium of 11C-AcAc with the other ketone, 11C-D-beta-hydroxybutyrate, and a different clearance profile. Overall, this suggests that in the kidney, the absorption and metabolism of 11C-AcAc is different compared to 11C-Ac. This dual tracer PET protocol provides the opportunity to explore the relative importance of ketone metabolism in cardiac and renal diseases, and to improve our mechanistic understanding of new metabolic interventions targeting these two organs.

5.
Plant Sci ; 331: 111694, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004941

RESUMEN

Large amounts of root exudates are released by plant roots into the soil. Due to their importance in regulating the rhizosphere properties, it is necessary to unravel the precise composition and function of exudates at the root-soil interface. However, obtaining root exudates without inducing artefacts is a difficult task. To analyse the low molecular weight molecules secreted by pea roots, a protocol of root exudate collection was developed to perform a metabolomics analysis using Nuclear Magnetic Resonance (NMR). To date a few NMR studies are dedicated to root exudates. Plant culture, exudates collection and sample preparation methods had thus to be adapted to the NMR approach. Here, pea seedlings were hydroponically grown. The obtained NMR fingerprints show that osmotic stress increases the quantity of the exudates but not their diversity. We therefore selected a protocol reducing the harvest time and using an ionic solvent and applied it to the analysis of faba bean exudates. NMR analysis of the metabolic profiles allowed to discriminate between pea and faba bean according to their exudate composition. This protocol is therefore very promising for studying the composition of root exudates from different plant species as well as their evolution in response to different environmental conditions or pathophysiological events.


Asunto(s)
Raíces de Plantas , Vicia faba , Raíces de Plantas/metabolismo , Exudados de Plantas/química , Suelo/química , Exudados y Transudados/metabolismo , Rizosfera , Plantas/metabolismo , Espectroscopía de Resonancia Magnética
6.
Neurobiol Aging ; 115: 77-87, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35504234

RESUMEN

Ketones, the brain's alternative fuel to glucose, bypass the brain glucose deficit and improve cognition in mild cognitive impairment (MCI). Our goal was to assess the impact of a 6-month ketogenic intervention on the functional connectivity within eight major brain resting-state networks, and its possible relationship to improved cognitive outcomes in the BENEFIC trial. MCI participants were randomized to a placebo (n = 15) or ketogenic medium chain triglyceride (kMCT; n = 17) intervention. kMCT was associated with increased functional connectivity within the dorsal attention network (DAN), which correlated to improvement in cognitive tests targeting attention. Ketone uptake (11C-acetoacetate PET) specifically in DAN cortical regions was highly increased in the kMCT group and was directly associated with the improved DAN functional connectivity. Analysis of the structural connectome revealed increased fiber density within the DAN following kMCT. Our findings suggest that ketones in MCI may prove beneficial for cognition at least in part because they improve brain network energy status, functional connectivity and axonal integrity.


Asunto(s)
Disfunción Cognitiva , Encéfalo/diagnóstico por imagen , Glucosa , Humanos , Cetonas , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas
7.
Nutr Neurosci ; 14(2): 51-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21605500

RESUMEN

Brain glucose and ketone uptake was investigated in Fisher rats subjected to mild experimental ketonemia induced by a ketogenic diet (KD) or by 48 hours fasting (F). Two tracers were used, (11)C-acetoacetate ((11)C-AcAc) for ketones and (18)F-fluorodeoxyglucose for glucose, in a dual-tracer format for each animal. Thus, each animal was its own control, starting first on the normal diet, then undergoing 48 hours F, followed by 2 weeks on the KD. In separate rats on the same diet conditions, expression of the transporters of glucose and ketones (glucose transporter 1 (GLUT1) and monocarboxylic acid transporter (MCT1)) was measured in brain microvessel preparations. Compared to controls, uptake of (11)C-AcAc increased more than 2-fold while on the KD or after 48 hours F (P < 0.05). Similar trends were observed for (18)FDG uptake with a 1.9-2.6 times increase on the KD and F, respectively (P < 0.05). Compared to controls, MCT1 expression increased 2-fold on the KD (P < 0.05) but did not change during F. No significant difference was observed across groups for GLUT1 expression. Significant differences across the three groups were observed for plasma beta-hydroxybutyrate (beta-HB), AcAc, glucose, triglycerides, glycerol, and cholesterol (P < 0.05), but no significant differences were observed for free fatty acids, insulin, or lactate. Although the mechanism by which mild ketonemia increases brain glucose uptake remains unclear, the KD clearly increased both the blood-brain barrier expression of MCT1 and stimulated brain (11)C-AcAc uptake. The present dual-tracer positron emission tomography approach may be particularly interesting in neurodegenerative pathologies such as Alzheimer's disease where brain energy supply appears to decline critically.


Asunto(s)
Acetoacetatos/farmacocinética , Encéfalo/metabolismo , Fluorodesoxiglucosa F18/farmacocinética , Cetosis/diagnóstico por imagen , Cetosis/metabolismo , Ácido 3-Hidroxibutírico/sangre , Animales , Barrera Hematoencefálica/metabolismo , Colesterol/sangre , Medios de Contraste/farmacocinética , Dieta Cetogénica , Ayuno , Ácidos Grasos no Esterificados/sangre , Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Glicerol/sangre , Insulina/sangre , Ácido Láctico/sangre , Masculino , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Tomografía de Emisión de Positrones/métodos , Ratas , Ratas Endogámicas F344 , Simportadores/genética , Simportadores/metabolismo , Triglicéridos/sangre
8.
Artículo en Inglés | MEDLINE | ID: mdl-33906081

RESUMEN

INTRODUCTION: Mild cognitive impairment (MCI) is often accompanied by metabolic abnormalities and inflammation that might play a role in the development of cognitive impairment. The use of ketogenic medium-chain triglycerides (kMCT) to improve cognition in this population has shown promising results but remains controversial because of the potentially detrimental effect of elevated intake of saturated fatty acids on cardiovascular (CV) health and perhaps inflammatory processes. The primary aim of this secondary data analysis report is to describe changes in cardiometabolic markers and peripheral inflammation during a 6-month kMCT intervention in MCI. METHODS: Thirty-nine participants with MCI completed the intervention of 30 g/day of either a kMCT drink or calorie-matched placebo (high-oleic acid) for 6 months. Plasma concentrations of cardiometabolic and inflammatory markers were collected before (fasting state) and after the intervention (2 h following the last drink). RESULTS: A mixed model ANOVA analysis revealed a time by group interaction for ketones (P < 0.001), plasma 8:0 and 10:0 acids (both P < 0.001) and IL-8 (P = 0.002) with follow up comparison revealing a significant increase in the kMCT group (+48%, P = 0.005), (+3,800 and +4,900%, both P < 0.001) and (+147%, P < 0.001) respectively. A main effect of time was observed for insulin (P = 0.004), triglycerides (P = 0.011) and non-esterified fatty acids (P = 0.036). CONCLUSION: Under these study conditions, 30 g/d of kMCT taken for six months and up to 2-hour before post-intervention testing had minimal effect on an extensive profile of circulating cardiometabolic and inflammatory markers as compared to a placebo calorie-matched drink. Our results support the safety kMCT supplementation in individuals with MCI. The clinical significance of the observed increase in circulating IL-8 levels is presently unknown and awaits future studies.


Asunto(s)
Disfunción Cognitiva/dietoterapia , Ácidos Grasos/sangre , Insulina/sangre , Interleucina-8/sangre , Triglicéridos/administración & dosificación , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Disfunción Cognitiva/sangre , Dieta Cetogénica , Esquema de Medicación , Ayuno/sangre , Femenino , Humanos , Masculino , Resultado del Tratamiento , Triglicéridos/farmacocinética
9.
Alzheimers Dement (N Y) ; 7(1): e12217, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869825

RESUMEN

INTRODUCTION: White matter (WM) energy supply is crucial for axonal function and myelin maintenance. An exogenous source of ketones, the brain's alternative fuel to glucose, bypasses the brain's glucose-specific energy deficit and improves cognitive outcomes in mild cognitive impairment (MCI). How an additional supply of ketones affects glucose or ketone uptake in specific WM fascicles in MCI has not previously been reported. METHODS: This 6-month interventional study included MCI participants randomized to a placebo (n = 16) or ketogenic medium chain triglyceride (kMCT; n = 17) drink. A neurocognitive battery and brain imaging were performed pre- and post-intervention. WM fascicle uptake of ketone and glucose and structural properties were assessed using positron emission tomography and diffusion imaging, respectively. RESULTS: Ketone uptake was increased in the kMCT group by 2.5- to 3.2-fold in all nine WM fascicles of interest (P < .001), an effect seen both in deep WM and in fascicle cortical endpoints. Improvement in processing speed was positively associated with WM ketone uptake globally and in individual fascicles, most importantly the fornix (r = +0.61; P = .014). DISCUSSION: A 6-month kMCT supplement improved WM energy supply in MCI by increasing ketone uptake in WM fascicles. The significant positive association with processing speed suggests that ketones may have a role in myelin integrity in MCI.

10.
J Pharmacol Exp Ther ; 334(1): 341-6, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20404010

RESUMEN

Our objective was to determine whether bezafibrate, a hypotriglyceridemic drug and peroxisome proliferator-activated receptor (PPAR)-alpha agonist, is ketogenic and increases fatty acid oxidation in humans. We measured fatty acid metabolism and ketone levels in 13 mildly hypertriglycemic adults (67 +/- 11 years old) during 2 metabolic study days lasting 6 h, 1 day before and 1 day after bezafibrate (400 mg of bezafibrate per day for 12 weeks). beta-Hydroxybutyrate, triglycerides, free fatty acids, fatty acid profiles, insulin, and glucose were measured in plasma, and fatty acid beta-oxidation was measured in breath after an oral 50-mg dose of the fatty acid tracer [U-(13)C]linoleic acid. As expected, 12 weeks on bezafibrate decreased plasma triglycerides by 35%. Bezafibrate tended to raise postprandial beta-hydroxybutyrate, an effect that was significant after normalization to the fasting baseline values (p = 0.03). beta-Oxidation of [U-(13)C]linoleic acid increased by 30% (p = 0.03) after treatment. On the metabolic study day after bezafibrate treatment, postprandial insulin decreased by 26% (p = 0.01), and glucose concentrations were lower 2 to 5 h postprandially. Thus, in hypertriglyceridemic individuals, bezafibrate is mildly ketogenic and significantly changes fatty acid metabolism, effects that may be linked to PPARalpha stimulation and to moderately improved glucose metabolism.


Asunto(s)
Bezafibrato/farmacología , Ácidos Grasos/metabolismo , Hipertrigliceridemia/tratamiento farmacológico , Cuerpos Cetónicos/metabolismo , Anciano , Bezafibrato/administración & dosificación , Bezafibrato/uso terapéutico , Pruebas Respiratorias , Ayuno/sangre , Ayuno/metabolismo , Ácidos Grasos/sangre , Femenino , Humanos , Hipertrigliceridemia/metabolismo , Hipolipemiantes/administración & dosificación , Hipolipemiantes/farmacología , Hipolipemiantes/uso terapéutico , Insulina/sangre , Cuerpos Cetónicos/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Oxidación-Reducción , Triglicéridos/sangre
11.
Front Nutr ; 7: 3, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32083091

RESUMEN

Ketones provide an alternative brain fuel and may be neuroprotective in older people. Little is known of how to optimize the ketogenic effect of C8:0-C10:0 medium chain triglyceride supplement (kMCT). Metabolic switching (MS) from glucose to ketones as a fuel may have metabolic benefits but has not been extensively studied in humans. The objective of the present study was to use an 8 h metabolic study day protocol to assess the influence of typical components of MS, including a kMCT supplement, low-carbohydrate meal and meal timing, on blood ketones, glucose, insulin and free fatty acids (FFA). In one test, the effect of age was also investigated. Over the 8 h metabolic study day, two 10 g doses of the kMCT increased the plasma ketone response by 19% while reducing overall glycemia by 12% without altering insulin or FFA levels. Moreover, a single early meal (breakfast but no lunch) potentiated the ketogenic effect of MS over 8 h, compared to a single delayed meal (lunch but no breakfast). Age and the low carbohydrate meal did not affect the ketones response. We conclude that an 8-h test period can be used to assess metabolic changes during short-term MS. kMCT provide a robust short-term increase in ketones and might enhance the metabolic effectiveness of short-term or intermittent fasting as a component of MS.

12.
J Alzheimers Dis ; 76(3): 863-881, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32568202

RESUMEN

BACKGROUND: White matter energy supply to oligodendrocytes and the axonal compartment is crucial for normal axonal function. Although gray matter glucose hypometabolism is extensively reported in Alzheimer's disease (AD), glucose and ketones, the brain's two main fuels, are rarely quantified in white matter in AD. OBJECTIVE: Using a dual-tracer PET method combined with a fascicle-specific diffusion MRI approach, robust to white matter hyper intensities and crossing fibers, we aimed to quantify both glucose and ketone metabolism in specific white matter fascicles associated with mild cognitive impairment (MCI; n = 51) and AD (n = 13) compared to cognitively healthy age-matched controls (Controls; n = 14). METHODS: Eight white matter fascicles of the limbic lobe and corpus callosum were extracted and analyzed into fascicle profiles of five sections. Glucose (18F-fluorodeoxyglucose) and ketone (11C-acetoacetate) uptake rates, corrected for partial volume effect, were calculated along each fascicle. RESULTS: The only fascicle with significantly lower glucose uptake in AD compared to Controls was the left posterior cingulate segment of the cingulum (-22%; p = 0.016). Non-significantly lower glucose uptake in this fascicle was also observed in MCI. In contrast to glucose, ketone uptake was either unchanged or higher in sections of the fornix and parahippocampal segment of the cingulum in AD. CONCLUSION: To our knowledge, this is the first report of brain fuel uptake calculated along white matter fascicles in humans. Energetic deterioration in white matter in AD appears to be specific to glucose and occurs first in the posterior cingulum.


Asunto(s)
Enfermedad de Alzheimer/patología , Glucosa/metabolismo , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Femenino , Fluorodesoxiglucosa F18/metabolismo , Sustancia Gris/metabolismo , Giro del Cíngulo/metabolismo , Humanos , Masculino , Persona de Mediana Edad
13.
Nutrition ; 25(3): 289-94, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19036560

RESUMEN

OBJECTIVES: We investigated whether a dietary supplement rich in eicosapentaenoic acid (EPA) increases fasting plasma ketones or postprandial ketone responses in healthy young and elderly subjects. METHODS: Ten young (22 +/- 1 y old) and 10 elderly (75 +/- 1 y old) subjects were recruited and participated in two identical study days, one before and one 6 wk after providing an EPA-enriched supplement (1.4 g/d of EPA and 0.2 g/d of docosahexaenoic acid). On the study days, blood samples were collected at fasting and every hour for 6 h after giving a breakfast. Fasting and postprandial plasma beta-hydroxybutyrate (beta-OHB), free fatty acid (FFA), triacylglycerol, glucose, and insulin responses were measured. Fatty acid profiles were assessed in fasting plasma samples before and after the EPA supplement. RESULTS: After the EPA supplement, postprandial plasma beta-OHB responses decreased by 44% in the young and by 24% in the elderly subjects, in addition to 20% and 34% lower FFA responses in the young and elderly adults, respectively. beta-OHB and FFAs were positively and significantly correlated in young but not in elderly subjects before and after the EPA supplement. In both groups, postprandial plasma triacylglycerols, glucose, and insulin were not significantly different after the intake of the EPA supplement. Before and after the EPA supplement, fasting plasma EPA was 50% higher in the elderly but increased by about five times in both groups after intake of the EPA supplement. CONCLUSION: Contrary to our expectations, EPA supplementation lowered postprandial beta-OHB response and, in the elderly subjects, the concentration of postprandial beta-OHB was not lowered after intake of the EPA supplement.


Asunto(s)
Ácido 3-Hidroxibutírico/sangre , Ácido Eicosapentaenoico/farmacología , Ácidos Grasos no Esterificados/sangre , Cetonas/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/sangre , Envejecimiento/fisiología , Área Bajo la Curva , Glucemia/metabolismo , Suplementos Dietéticos , Ácido Eicosapentaenoico/administración & dosificación , Ayuno/sangre , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/farmacología , Femenino , Humanos , Insulina/sangre , Masculino , Periodo Posprandial , Triglicéridos/sangre , Adulto Joven
14.
Front Nutr ; 6: 46, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31058159

RESUMEN

Background: Medium chain triglycerides (MCT) are ketogenic but the relationship between the change in plasma ketones and the change plasma medium chain fatty acids (MCFA)-octanoate, decanoate, or dodecanoate-after an oral dose of MCT is not well-known. An 8 h metabolic study day is a suitable model to assess the acute effects on plasma ketones and MCFA after a dose of tricaprylin (C8), tricaprin (C10), trilaurin (C12) or mixed MCT (C8C10). Objective: To assess in healthy humans the relationship between the change in plasma ketones, and octanoate, decanoate and dodecanoate in plasma total lipids during an 8 h metabolic study day in which a first 20 ml dose of the homogenized test oil is taken with breakfast and a second 20 ml dose is taken 4 h later without an accompanying meal. Results: The change in plasma acetoacetate, ß-hydroxybutyrate and total ketones was highest after C8 (0.5 to 3 h post-dose) and was lower during tests in which octanoate was absent or was diluted by C10 in the test oil. The plasma ketone response was also about 2 fold higher without an accompanying meal (P = 0.012). However, except during the pure C10 test, the response of octanoate, decanoate or dodecanoate in plasma total lipids to the test oils was not affected by consuming an accompanying meal. Except with C12, the 4 h area-under-the-curve of plasma ß-hydroxybutyrate/acetoacetate was 2-3 fold higher when no meal was consumed (P < 0.04). Conclusion: C8 was about three times more ketogenic than C10 and about six times more ketogenic than C12 under these acute metabolic test conditions, an effect related to the post-dose increase in octanoate in plasma total lipids.

15.
Appl Physiol Nutr Metab ; 44(1): 66-73, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29986150

RESUMEN

The objectives of this study were to determine (i) whether a 5-day aerobic exercise (AE) program combined with a medium-chain triglyceride (MCT) supplement would increase the plasma ketone response in older women more than either intervention alone and (ii) whether ketonemia after these combined or separate treatments was alike in normoglycemic (NG) and prediabetic (PD) women. Older women (NG, n = 10; PD, n = 9) underwent a 4-h metabolic study after each of 4 different treatments: (i) no treatment (control), (ii) 5 days of MCT alone (30 g·day-1), (iii) 1 session of 30 min of AE alone, and (iv) 5 days of MCT and AE combined (MCT+AE). Blood was sampled every 30 min over 4 h for analysis. In NG, MCT+AE induced the highest area under the curve (AUC) for plasma ketones (835 ± 341 µmol·h·L-1); this value was 69% higher than that observed with MCT alone (P < 0.05). AUCs were not different between MCT alone and MCT+AE in PD, but both treatments induced a significantly higher AUC than the control or AE alone (P < 0.05). Although there was a trend towards a higher ketone AUC in NG versus PD with AE alone (P = 0.091), there was no significant difference between the ketone AUCs in PD and NG. In conclusion, MCT+AE was more ketogenic in older women than MCT or AE alone. MCT+AE had a synergistic effect on ketonemia in NG but not in PD. Whether improving insulin sensitivity with a longer term AE intervention can improve the ketogenic effect of MCT in PD and thereby increase brain ketone uptake in older people merits further investigation.


Asunto(s)
Glucemia/metabolismo , Dieta Cetogénica , Terapia por Ejercicio/métodos , Estado Prediabético/terapia , Triglicéridos/administración & dosificación , Factores de Edad , Anciano , Biomarcadores/sangre , Dieta Cetogénica/efectos adversos , Terapia por Ejercicio/efectos adversos , Femenino , Humanos , Persona de Mediana Edad , Estado Prediabético/sangre , Estado Prediabético/diagnóstico , Quebec , Factores Sexuales , Factores de Tiempo , Resultado del Tratamiento , Triglicéridos/metabolismo
16.
Front Aging Neurosci ; 11: 15, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30828297

RESUMEN

We aimed to longitudinally assess the relationship between changing brain energy metabolism (glucose and acetoacetate) and cognition during healthy aging. Participants aged 71 ± 5 year underwent cognitive evaluation and quantitative positron emission tomography (PET) and magnetic resonance imaging (MRI) scans at baseline (N = 25) and two (N = 25) and four (N = 16) years later. During the follow-up, the rate constant for brain extraction of glucose (Kglc) declined by 6%-12% mainly in the temporo-parietal lobes and cingulate gyri (p ≤ 0.05), whereas brain acetoacetate extraction (Kacac) and utilization remained unchanged in all brain regions (p ≥ 0.06). Over the 4 years, cognitive results remained within the normal age range but an age-related decline was observed in processing speed. Kglc in the caudate was directly related to performance on several cognitive tests (r = +0.41 to +0.43, all p ≤ 0.04). Peripheral insulin resistance assessed by the homeostasis model assessment of insulin resistance (HOMA-IR) was significantly inversely related to Kglc in the thalamus (r = -0.44, p = 0.04) and in the caudate (r = -0.43, p = 0.05), and also inversely related to executive function, attention and processing speed (r = -0.45 to -0.53, all p ≤ 0.03). We confirm in a longitudinal setting that the age-related decline in Kglc is directly associated with declining performance on some tests of cognition but does not significantly affect Kacac.

17.
Biochim Biophys Acta ; 1768(5): 1291-8, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17382289

RESUMEN

After binding to specific receptors, Cry toxins form pores in the midgut apical membrane of susceptible insects. The receptors could form part of the pore structure or simply catalyze pore formation and consequently be recycled. To discriminate between these possibilities, the kinetics of pore formation in brush border membrane vesicles isolated from Manduca sexta was studied with an osmotic swelling assay. Pore formation, as deduced from changes in membrane permeability induced by Cry1Ac during a 60-min incubation period, was strongly dose-dependent, but rapidly reached a maximum as toxin concentration was increased. Following exposure of the vesicles to the toxin, the osmotic swelling rate reached a maximum shortly after a delay period. Under these conditions, at relatively high toxin concentrations, the maximal osmotic swelling rate increased linearly with toxin concentration. When vesicles were incubated for a short time with the toxin and then rapidly cooled to prevent the formation of new pores before and during the osmotic swelling experiment, a plateau in the rate of pore formation was observed as toxin concentration was increased. Taken together, these results suggest that the receptors do not act as simple catalysts of pore formation, but remain associated with the pores once they are formed.


Asunto(s)
Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/farmacología , Toxinas Bacterianas/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Endotoxinas/farmacología , Proteínas Hemolisinas/farmacología , Cinética , Manduca/efectos de los fármacos , Microvellosidades/efectos de los fármacos , Presión Osmótica/efectos de los fármacos , Proteínas Citotóxicas Formadoras de Poros/farmacología
18.
Mol Genet Metab ; 95(3): 117-26, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18762440

RESUMEN

Fat cell lipolysis, the cleavage of triglycerides and release of fatty acids and glycerol, evolved to enable survival during prolonged food deprivation but is paradoxically increased in obesity, in which a surfeit of all energy metabolites is found. Essential, previously-unsuspected components have been discovered in the lipolytic machinery, at the protective interface of the lipid droplet surface and in the signaling pathways that control lipolysis. At least two adipocyte lipases are important for controlling lipolysis, hormone-sensitive lipase (HSL) and adipocyte triglyceride lipase (ATGL). Perilipin (PLIN) and possibly other proteins of the lipid droplet surface are master regulators of lipolysis, protecting or exposing the triglyceride core of the droplet to lipases. The prototypes for hormonal lipolytic control are beta adrenergic stimulation and suppression by insulin, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and PLIN. Newly-recognized mediators of lipolysis include atrial natriuretic peptide, cyclic GMP, the ketone body 3-hydroxybutyrate, AMP kinase and mitogen-activated kinases. Lipolysis must be interpreted in its physiological context since similar rates of basal or stimulated lipolysis occur under different conditions and by different mechanisms. Age, sex, anatomical site, genotype and species differences are each important variables. Manipulation of lipolysis has therapeutic potential in several inborn errors and in the metabolic syndrome that frequently complicates obesity.


Asunto(s)
Metabolismo Energético , Lipólisis , Transducción de Señal , Adipocitos/enzimología , Adipocitos/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Lipasa/genética , Lipasa/metabolismo , Obesidad/metabolismo , Obesidad/terapia
19.
Lipids ; 43(11): 1085-9, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18795357

RESUMEN

Little information is available concerning whether incorporation of dietary omega-3 fatty acids into plasma lipids changes during healthy aging. Elderly (74 +/- 4 years old) and young (24 +/- 2 years old) adults were given a fish oil supplement for 3 weeks that provided 680 mg/day of docosahexaenoic acid and 320 mg/day of eicosapentaenoic acid, followed by a 2 week wash-out period. Compliance was monitored by spiking the capsules with carbon-13 glucose, the excretion of which was measured in breath CO2. In response to the supplement, plasma docosahexaenoic acid rose 42% more in the elderly but eicosapentaenoic responded similarly in both groups. Despite raising docosahexaenoic acid intake by five to tenfold, the supplement did not raise plasma free docosahexaenoic acid (% or mg/dL) in either group. We conclude that healthy aging is accompanied by subtle but significant changes in DHA incorporation into plasma lipids.


Asunto(s)
Ácidos Grasos Omega-3/sangre , Aceites de Pescado/administración & dosificación , Adulto , Anciano , Suplementos Dietéticos , Ácidos Docosahexaenoicos/sangre , Ácido Eicosapentaenoico/sangre , Aceites de Pescado/farmacología , Humanos
20.
J Alzheimers Dis ; 64(2): 551-561, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29914035

RESUMEN

BACKGROUND: In Alzheimer's disease (AD), it is unknown whether the brain can utilize additional ketones as fuel when they are derived from a medium chain triglyceride (MCT) supplement. OBJECTIVE: To assess whether brain ketone uptake in AD increases in response to MCT as it would in young healthy adults. METHODS: Mild-moderate AD patients sequentially consumed 30 g/d of two different MCT supplements, both for one month: a mixture of caprylic (55%) and capric acids (35%) (n = 11), followed by a wash-out and then tricaprylin (95%; n = 6). Brain ketone (11C-acetoacetate) and glucose (FDG) uptake were quantified by PET before and after each MCT intervention. RESULTS: Brain ketone consumption doubled on both types of MCT supplement. The slope of the relationship between plasma ketones and brain ketone uptake was the same as in healthy young adults. Both types of MCT increased total brain energy metabolism by increasing ketone supply without affecting brain glucose utilization. CONCLUSION: Ketones from MCT compensate for the brain glucose deficit in AD in direct proportion to the level of plasma ketones achieved.


Asunto(s)
Enfermedad de Alzheimer/dietoterapia , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Metabolismo Energético/fisiología , Cetonas/sangre , Triglicéridos/uso terapéutico , Acetatos/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Carbono/metabolismo , Femenino , Fluorodesoxiglucosa F18/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Tomografía de Emisión de Positrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA