Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Trop Anim Health Prod ; 51(7): 1847-1853, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30941706

RESUMEN

This study aimed to investigate the genetic variability of conception rate (CR) and non-return rate (NR) in Iranian dairy cows under heat stress conditions. A total of 34,304 records of CR, and NR at 45 days (NR45) and 90 days (NR90) after the first insemination, from 21,405 Holstein cows were included in this study. The weather records were obtained from seven meteorological stations located at a distance of less than 70 km from the farms. Temperature-Humidity Index (THI) was determined for each record on the insemination day. The statistical models for CR, NR45, and NR90 included the fixed effects of herd-year-season, parity, milk yield, and THI. Genetic components were estimated using an animal model and fitting random regression models on THI based on the Bayesian method. Results showed similar decreasing trends for CR, NR45, and NR90 when increasing the THI levels. The additive genetic variance of heat tolerance for CR, NR45, and NR90 were 0.008 ± 0.0004, 0.0262 ± 0.007, and 0.0254 ± 0.006, respectively. The additive genetic variance of heat tolerance increased directly with THI, and therefore, our findings indicate that a combined selection using heat tolerance can be considered for genetic evaluation of reproduction traits under heat stress conditions.


Asunto(s)
Bovinos/fisiología , Fertilización/genética , Calor , Termotolerancia/genética , Animales , Bovinos/genética , Femenino , Humedad , Irán , Embarazo
2.
BMC Genomics ; 19(1): 98, 2018 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-29374456

RESUMEN

BACKGROUND: While autozygosity as a consequence of selection is well understood, there is limited information on the ability of different methods to measure true inbreeding. In the present study, a gene dropping simulation was performed and inbreeding estimates based on runs of homozygosity (ROH), pedigree, and the genomic relationship matrix were compared to true inbreeding. Inbreeding based on ROH was estimated using SNP1101, PLINK, and BCFtools software with different threshold parameters. The effects of different selection methods on ROH patterns were also compared. Furthermore, inbreeding coefficients were estimated in a sample of genotyped North American Holstein animals born from 1990 to 2016 using 50 k chip data and ROH patterns were assessed before and after genomic selection. RESULTS: Using ROH with a minimum window size of 20 to 50 using SNP1101 provided the closest estimates to true inbreeding in simulation study. Pedigree inbreeding tended to underestimate true inbreeding, and results for genomic inbreeding varied depending on assumptions about base allele frequencies. Using an ROH approach also made it possible to assess the effect of population structure and selection on distribution of runs of autozygosity across the genome. In the simulation, the longest individual ROH and the largest average length of ROH were observed when selection was based on best linear unbiased prediction (BLUP), whereas genomic selection showed the largest number of small ROH compared to BLUP estimated breeding values (BLUP-EBV). In North American Holsteins, the average number of ROH segments of 1 Mb or more per individual increased from 57 in 1990 to 82 in 2016. The rate of increase in the last 5 years was almost double that of previous 5 year periods. Genomic selection results in less autozygosity per generation, but more per year given the reduced generation interval. CONCLUSIONS: This study shows that existing software based on the measurement of ROH can accurately identify autozygosity across the genome, provided appropriate threshold parameters are used. Our results show how different selection strategies affect the distribution of ROH, and how the distribution of ROH has changed in the North American dairy cattle population over the last 25 years.


Asunto(s)
Bovinos/genética , Homocigoto , Endogamia , Selección Genética , Animales , Femenino , Frecuencia de los Genes , Genoma , Masculino , América del Norte , Linaje , Polimorfismo de Nucleótido Simple , Dinámica Poblacional
3.
Commun Biol ; 7(1): 724, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866948

RESUMEN

Most genetic variants associated with fertility in mammals fall in non-coding regions of the genome and it is unclear how these variants affect fertility. Here we use genome-wide association summary statistics for Heifer puberty (pubertal or not at 600 days) from 27,707 Bos indicus, Bos taurus and crossbred cattle; multi-trait GWAS signals from 2119 indicine cattle for four fertility traits, including days to calving, age at first calving, pregnancy status, and foetus age in weeks (assessed by rectal palpation of the foetus); and expression quantitative trait locus for whole blood from 489 indicine cattle, to identify 87 putatively functional genes affecting cattle fertility. Our analysis reveals a significant overlap between the set of cattle and previously reported human fertility-related genes, impling the existence of a shared pool of genes that regulate fertility in mammals. These findings are crucial for developing approaches to improve fertility in cattle and potentially other mammals.


Asunto(s)
Fertilidad , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Animales , Bovinos/genética , Fertilidad/genética , Estudio de Asociación del Genoma Completo/veterinaria , Femenino , Polimorfismo de Nucleótido Simple
4.
Front Genet ; 14: 1089490, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816029

RESUMEN

Introduction: Phenotype predictions of beef eating quality for individual animals could be used to allocate animals to longer and more expensive feeding regimes as they enter the feedlot if they are predicted to have higher eating quality, and to sort carcasses into consumer or market value categories. Phenotype predictions can include genetic effects (breed effects, heterosis and breeding value), predicted from genetic markers, as well as fixed effects such as days aged and carcass weight, hump height, ossification, and hormone growth promotant (HGP) status. Methods: Here we assessed accuracy of phenotype predictions for five eating quality traits (tenderness, juiciness, flavour, overall liking and MQ4) in striploins from 1701 animals from a wide variety of backgrounds, including Bos indicus and Bos taurus breeds, using genotypes and simple fixed effects including days aged and carcass weight. The genetic components were predicted based on 709k single nucleotide polymorphism (SNP) using BayesR model, which assumes some markers may have a moderate to large effect. Fixed effects in the prediction included principal components of the genomic relationship matrix, to account for breed effects, heterosis, days aged and carcass weight. Results and Discussion: A model which allowed breed effects to be captured in the SNP effects (e.g., not explicitly fitting these effects) tended to have slightly higher accuracies (0.43-0.50) compared to when these effects were explicitly fitted as fixed effects (0.42-0.49), perhaps because breed effects when explicitly fitted were estimated with more error than when incorporated into the (random) SNP effects. Adding estimates of effects of days aged and carcass weight did not increase the accuracy of phenotype predictions in this particular analysis. The accuracy of phenotype prediction for beef eating quality traits was sufficiently high that such predictions could be useful in predicting eating quality from DNA samples taken from an animal/carcass as it enters the processing plant, to enable optimal supply chain value extraction by sorting product into markets with different quality. The BayesR predictions identified several novel genes potentially associated with beef eating quality.

5.
Commun Biol ; 4(1): 829, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34211114

RESUMEN

To further the understanding of the evolution of transcriptional regulation, we profiled genome-wide transcriptional start sites (TSSs) in two sub-species, Bos taurus taurus and Bos taurus indicus, that diverged approximately 500,000 years ago. Evolutionary and developmental-stage differences in TSSs were detected across the sub-species, including translocation of dominant TSS and changes in TSS distribution. The 16% of all SNPs located in significant differentially used TSS clusters across sub-species had significant shifts in allele frequency (472 SNPs), indicating they may have been subject to selection. In spleen and muscle, a higher relative TSS expression was observed in Bos indicus than Bos taurus for all heat shock protein genes, which may be responsible for the tropical adaptation of Bos indicus.


Asunto(s)
Bovinos/genética , Variación Genética/genética , Polimorfismo de Nucleótido Simple , Sitio de Iniciación de la Transcripción , Transcripción Genética/genética , Animales , Bovinos/clasificación , Evolución Molecular , Expresión Génica , Frecuencia de los Genes , Especiación Genética , Proteínas de Choque Térmico/genética , Hígado/metabolismo , Músculos/metabolismo , Especificidad de Órganos/genética , Especificidad de la Especie , Bazo/metabolismo
6.
Front Genet ; 12: 760450, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868240

RESUMEN

Extensively grazed cattle are often mustered only once a year. Therefore, birthdates are typically unknown or inaccurate. Birthdates would be useful for deriving important traits (growth rate; calving interval), breed registrations, and making management decisions. Epigenetic clocks use methylation of DNA to predict an individual's age. An epigenetic clock for cattle could provide a solution to the challenges of industry birthdate recording. Here we derived the first epigenetic clock for tropically adapted cattle using portable sequencing devices from tail hair, a tissue which is widely used in industry for genotyping. Cattle (n = 66) with ages ranging from 0.35 to 15.7 years were sequenced using Oxford Nanopore Technologies MinION and methylation was called at CpG sites across the genome. Sites were then filtered and used to calculate a covariance relationship matrix based on methylation state. Best linear unbiased prediction was used with 10-fold cross validation to predict age. A second methylation relationship matrix was also calculated that contained sites associated with genes used in the dog and human epigenetic clocks. The correlation between predicted age and actual age was 0.71 for all sites and 0.60 for dog and human gene epigenetic clock sites. The mean absolute deviation was 1.4 years for animals aged less than 3 years of age, and 1.5 years for animals aged 3-10 years. This is the first reported epigenetic clock using industry relevant samples in cattle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA