Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem ; 101: 117645, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401456

RESUMEN

All three possible sulfamate derivatives of the selective estrogen receptor modulator Raloxifene (bis-sulfamate 7 and two mono-sulfamates 8-9) were synthesized and evaluated as inhibitors of the clinical drug target steroid sulfatase (STS), both in cell-free and in cell-based assays, and also as estrogen receptor (ER) modulators. Bis-sulfamate 7 was the most potent STS inhibitor with an IC50 of 12.2 nM in a whole JEG3 cell-based assay, with the two mono-sulfamates significantly weaker. The estrogen receptor-modulating activities of 7-9 showed generally lower affinities compared to Raloxifene HCl, diethylstilbestrol and other known ligands, with mono-sulfamate 8 being the best ligand (Ki of 1.5 nM) for ERα binding, although 7 had a Ki of 13 nM and both showed desirable antagonist activity. The antiproliferative activities of the sulfamate derivatives against the T-47D breast cancer cell line showed 7 as most potent (GI50 = 7.12 µM), comparable to that of Raloxifene. Compound 7 also showed good antiproliferative potency in the NCI-60 cell line panel with a GI50 of 1.34 µM against MDA-MB-231 breast cancer cells. Stability testing of 7-9 showed that bis-sulfamate 7 hydrolyzed by desulfamoylation at a surprisingly rapid rate, initially leading selectively to 8 and finally to Raloxifene 3 without formation of 9. The mechanisms of these hydrolysis reactions could be extensively rationalized. Conversion of Raloxifene (3) into its bis-sulfamate (7) thus produced a promising drug lead with nanomolar dual activity as an STS inhibitor and ERα antagonist, as a potential candidate for treatment of estrogen-dependent breast cancer.


Asunto(s)
Neoplasias de la Mama , Clorhidrato de Raloxifeno , Ácidos Sulfónicos , Humanos , Femenino , Clorhidrato de Raloxifeno/farmacología , Receptor alfa de Estrógeno , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Esteril-Sulfatasa , Neoplasias de la Mama/tratamiento farmacológico , Moduladores de los Receptores de Estrógeno
2.
Molecules ; 26(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064842

RESUMEN

Steroid sulphatase (STS), involved in the hydrolysis of steroid sulphates, plays an important role in the formation of both active oestrogens and androgens. Since these steroids significantly impact the proliferation of both oestrogen- and androgen-dependent cancers, many research groups over the past 30 years have designed and developed STS inhibitors. One of the main contributors to this field has been Prof. Barry Potter, previously at the University of Bath and now at the University of Oxford. Upon Prof. Potter's imminent retirement, this review takes a look back at the work on STS inhibitors and their contribution to our understanding of sulphate biology and as potential therapeutic agents in hormone-dependent disease. A number of potent STS inhibitors have now been developed, one of which, Irosustat (STX64, 667Coumate, BN83495), remains the only one to have completed phase I/II clinical trials against numerous indications (breast, prostate, endometrial). These studies have provided new insights into the origins of androgens and oestrogens in women and men. In addition to the therapeutic role of STS inhibition in breast and prostate cancer, there is now good evidence to suggest they may also provide benefits in patients with colorectal and ovarian cancer, and in treating endometriosis. To explore the potential of STS inhibitors further, a number of second- and third-generation inhibitors have been developed, together with single molecules that possess aromatase-STS inhibitory properties. The further development of potent STS inhibitors will allow their potential therapeutic value to be explored in a variety of hormone-dependent cancers and possibly other non-oncological conditions.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Esteril-Sulfatasa/antagonistas & inhibidores , Animales , Vías Biosintéticas/efectos de los fármacos , Ensayos Clínicos como Asunto , Desarrollo de Medicamentos , Inhibidores Enzimáticos/química , Humanos , Esteril-Sulfatasa/metabolismo
3.
Bioorg Med Chem ; 28(8): 115406, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32173116

RESUMEN

Steroid sulfatase (STS) has recently emerged as a drug target for management of hormone-dependent malignancies. In the present study, a new series of twenty-one aryl amido-linked sulfamate derivatives 1a-u was designed and synthesized, based upon a cyclohexyl lead compound. All members were evaluated as STS inhibitors in a cell-free assay. Adamantyl derivatives 1h and 1p-r were the most active with more than 90% inhibition at 10 µM concentration and, for those with the greatest inhibitory activity, IC50 values were determined. These compounds exhibited STS inhibition within the range of ca 25-110 nM. Amongst them, compound 1q possessing a o-chlorobenzene sulfamate moiety exhibited the most potent STS inhibitory activity with an IC50 of 26 nM. Furthermore, to assure capability to pass through the cell lipid bilayer, compounds with low IC50 values were tested against STS activity in JEG-3 whole-cell assays. Consequently, 1h and 1q demonstrated IC50 values of ca 14 and 150 nM, respectively. Thus, compound 1h is 31 times more potent than the corresponding cyclohexyl lead (IC50 value = 421 nM in a JEG-3 whole-cell assay). Furthermore, the most potent STS inhibitors (1h and 1p-r) were evaluated for their antiproliferative activity against the estrogen-dependent breast cancer cell line T-47D. They showed promising activity with single digit micromolar IC50 values (ca 1-6 µM) and their potency against T-47D cells was comparable to that against STS enzyme. In conclusion, this new class of adamantyl-containing aryl sulfamate inhibitor has potential for further development against hormone-dependent tumours.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Ácidos Sulfónicos/química , Antineoplásicos/química , Neoplasias de la Mama , Sistema Libre de Células , Femenino , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Esteril-Sulfatasa/antagonistas & inhibidores , Relación Estructura-Actividad
4.
Bioorg Chem ; 95: 103495, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31855822

RESUMEN

Steroid sulfatase (STS) transforms hormone precursors into active steroids. Thus, it represents a target of intense research regarding hormone-dependent cancers. In this study, three ligand-based pharmacophore models were developed to identify STS inhibitors from natural sources. In a pharmacophore-based virtual screening of a curated molecular TCM database, lanostane-type triterpenes (LTTs) were predicted as STS ligands. Three traditionally used polypores rich in LTTs, i.e., Ganoderma lucidum Karst., Gloeophyllum odoratum Imazeki, and Fomitopsis pinicola Karst., were selected as starting materials. Based on eighteen thereof isolated LTTs a structure activity relationship for this compound class was established with piptolinic acid D (1), pinicolic acid B (2), and ganoderol A (3) being the most pronounced and first natural product STS inhibitors with IC50 values between 10 and 16 µM. Molecular docking studies proposed crucial ligand target interactions and a prediction tool for these natural compounds correlating with experimental findings.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Lanosterol/farmacología , Esteril-Sulfatasa/antagonistas & inhibidores , Triterpenos/farmacología , Basidiomycota/química , Coriolaceae/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Lanosterol/análogos & derivados , Lanosterol/química , Ligandos , Modelos Moleculares , Estructura Molecular , Reishi/química , Esteril-Sulfatasa/metabolismo , Relación Estructura-Actividad , Triterpenos/química , Triterpenos/aislamiento & purificación
5.
Blood ; 124(24): 3553-60, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25301708

RESUMEN

CD19 is ubiquitously expressed on chronic lymphocytic leukemia (CLL) cells and is therefore an attractive candidate for antibody targeting. XmAb5574 (aka MOR00208) is a novel humanized CD19 monoclonal antibody with an engineered Fc region to enhance Fcγ receptor binding affinity. Here we report results of a first in human phase 1 trial of XmAb5574 in patients with relapsed or refractory CLL. Twenty-seven patients were enrolled to 6 escalating dose levels, with expansion at the highest dose level of 12 mg/kg. Nine doses of XmAb5574 were infused over 8 weeks. No maximal tolerated dose was reached, and the drug was generally well tolerated, with infusion reactions of grades 1 and 2 being the most common toxicities. Grade 3 and 4 toxicities occurred in 5 patients and included neutropenia, thrombocytopenia, increased aspartate aminotransferase, febrile neutropenia, and tumor lysis syndrome. XmAb5574 showed preliminary efficacy, with 18 patients (66.7%) responding by physical examination criteria and laboratory studies, and 8 patients (29.6%) responding by computed tomography criteria. Pharmacokinetics showed a half-life of 14 days with clearance that was not dose-dependent. In conclusion, this phase 1 trial demonstrates safety and preliminary efficacy of a novel Fc-engineered CD19 monoclonal antibody XmAb5574 and justifies movement into the phase 2 setting. This trial was registered at www.clinicaltrials.gov as #NCT01161511.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antineoplásicos/administración & dosificación , Antígenos CD19 , Antineoplásicos , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/farmacocinética , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Femenino , Semivida , Humanos , Regiones Constantes de Inmunoglobulina/administración & dosificación , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Recurrencia , Factores de Tiempo , Tomografía Computarizada por Rayos X
6.
Bioorg Med Chem ; 24(12): 2762-7, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27143133

RESUMEN

A series of new arylamide derivatives possessing terminal sulfonate or sulfamate moieties was designed and synthesized. The target compounds were tested for in vitro inhibitory effects against the steroid sulfatase (STS) enzyme in a cell-free assay system. The free sulfamate derivative 1j was the most active. It inhibited the enzymatic activity by 72.0% and 55.7% at 20µM and 10µM, respectively. Compound 1j was further tested for STS inhibition in JEG-3 placental carcinoma cells with high STS enzyme activity. It inhibited 93.9% of the enzyme activity in JEG-3 placental carcinoma cells at 20µM with an efficacy near to that of the well-established drug STX64 as reference. At 10µM, 1j inhibited 86.1% of the STS activity of JEG-3. Its IC50 value against the STS enzyme in JEG-3 cells was 0.421µM. Thus, 1j represents an attractive new non-steroidal lead for further optimization.


Asunto(s)
Acrilamidas/química , Acrilamidas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Esteril-Sulfatasa/antagonistas & inhibidores , Acrilamidas/síntesis química , Línea Celular Tumoral , Inhibidores Enzimáticos/síntesis química , Femenino , Humanos , Placenta/citología , Placenta/enzimología , Embarazo , Esteril-Sulfatasa/metabolismo , Ácidos Sulfónicos/síntesis química , Ácidos Sulfónicos/química , Ácidos Sulfónicos/farmacología
7.
Endocr Connect ; 13(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37992487

RESUMEN

Adrenocortical carcinoma (ACC) is an aggressive malignancy with limited treatment options. Polo-like kinase 1 (PLK1) is a promising drug target; PLK1 inhibitors (PLK1i) have been investigated in solid cancers and are more effective in TP53-mutated cases. We evaluated PLK1 expression in ACC samples and the efficacy of two PLK1i in ACC cell lines with different genetic backgrounds. PLK1 protein expression was investigated by immunohistochemistry in tissue samples and correlated with clinical data. The efficacy of rigosertib (RGS), targeting RAS/PI3K, CDKs and PLKs, and poloxin (Pol), specifically targeting the PLK1 polo-box domain, was tested in TP53-mutated NCI-H295R, MUC-1, and CU-ACC2 cells and in TP53 wild-type CU-ACC1. Effects on proliferation, apoptosis, and viability were determined. PLK1 immunostaining was stronger in TP53-mutated ACC samples vs wild-type (P = 0.0017). High PLK1 expression together with TP53 mutations correlated with shorter progression-free survival (P= 0.041). NCI-H295R showed a time- and dose-dependent reduction in proliferation with both PLK1i (P< 0.05at 100 nM RGS and 30 µM Pol). In MUC-1, a less pronounced decrease was observed (P< 0.05at 1000 nM RGS and 100 µM Pol). 100 nM RGS increased apoptosis in NCI-H295R (P< 0.001), with no effect on MUC-1. CU-ACC2 apoptosis was induced only at high concentrations (P < 0.05 at 3000 nM RGS and 100 µM Pol), while proliferation decreased at 1000 nM RGS and 30 µM Pol. CU-ACC1 proliferation reduced, and apoptosis increased, only at 100 µM Pol. TP53-mutated ACC cell lines demonstrated better response to PLK1i than wild-type CU-ACC1. These data suggest PLK1i may be a promising targeted treatment of a subset of ACC patients, pre-selected according to tumour genetic signature.

8.
Int J Colorectal Dis ; 28(6): 737-49, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23319136

RESUMEN

AIM: The role of oestrogen metabolism and action in colorectal cancer (CRC) is controversial. An extensive review of the current literature, encompassing epidemiological evidence, systemic and peripheral oestrogen concentrations, 17ß-hydroxysteroid dehydrogenase (17ß-HSD) and aromatase in CRC, steroid sulphatase (STS)/oestrone sulphotransferase (EST) and in vitro and in vivo genomic effects was therefore undertaken. METHODS: A literature search (key words: colorectal cancer, oestrogen, oestrogen receptor, 17ß-HSD, STS, organic anion transporter) was performed using Embase, Medline, and Pubmed and papers were evaluated on scientific relevance on an individual basis. RESULTS: Epidemiological data highlights that premenopausal women, or postmenopausal women taking hormone replacement therapy, are significantly less likely than males to develop CRC. This implies that oestrogen signalling is most likely involved in CRC physiology and aetiology. Little is known about oestrogen metabolism in the colon. However, the expression of 17ß-HSD, STS, and EST, enzymes involved in oestrogen metabolism, have shown prognostic significance. Evidence also suggests that protective effects are modulated through oestrogen receptor beta, although which metabolite of oestrogen, oestradiol (E2) or oestrone (E1), is more active remains undefined. To complicate matters, the changes in the peripheral ratios of these enzymes, oestrogens and receptors most likely influences CRC progression. CONCLUSION: Epidemiological evidence, now supported by in vitro and in vivo studies, strongly associates oestrogen action and metabolism with CRC. Initially protective against CRC, once developed, results suggests that oestrogens increase proliferation. Consequently, hormone-ablation therapy, already successful against breast and prostate cancer, may be effective against CRC.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Estrógenos/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Animales , Aromatasa/metabolismo , Colon/patología , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , Estrógenos/química , Humanos , Esteril-Sulfatasa/metabolismo
9.
J Steroid Biochem Mol Biol ; 233: 106371, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37516405

RESUMEN

The colon is the largest hormonally active tissue in the human body. It has been known for over a hundred years that various hormones and bioactive peptides play important roles in colon function. More recently there is a growing interest in the role the sex steroids, oestrogens and androgens, may play in both normal colon physiology and colon pathophysiology. In this review, we examine the potential role oestrogens and androgens play in the colon. The metabolism and subsequent action of sex steroids in colonic tissue is discussed and how these hormones impact colon motility is investigated. Furthermore, we also determine how oestrogens and androgens influence colorectal cancer incidence and development and highlight potential new therapeutic targets for this malignancy. This review also examines how sex steroids potentially impact the severity and progression of other colon disease, such as diverticulitis, irritable bowel syndrome, and polyp formation.


Asunto(s)
Andrógenos , Hormonas Esteroides Gonadales , Humanos , Andrógenos/metabolismo , Estrógenos/metabolismo , Colon/metabolismo , Esteroides
10.
RSC Med Chem ; 14(2): 356-366, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36846364

RESUMEN

Aromatase (CYP19A1) inhibitors are the mainstay therapeutics for the treatment of hormone dependant breast cancer, which accounts for approximately 70% of all breast cancer cases. However, increased resistance to the clinically used aromatase inhibitors, including letrozole and anastrazole, and off target effects, necessitates the development of aromatase inhibitors with improved drug profiles. The development of extended 4th generation pyridine based aromatase inhibitors with dual binding (haem and access channel) is therefore of interest and here we describe the design, synthesis and computational studies. Cytotoxicity and selectivity studies identified the pyridine derivative (4-bromophenyl)(6-(but-2-yn-1-yloxy)benzofuran-2-yl)(pyridin-3-yl)methanol (10c) as optimal with CYP19A1 IC50 0.83 nM (c.f. letrozole IC50 0.70 nM), and an excellent cytotoxicity and selectivity profile. Interestingly, computational studies for the 6-O-butynyloxy (10) and 6-O-pentynyloxy (11) derivatives identified an alternative access channel lined by Phe221, Trp224, Gln225 and Leu477, providing further insight into the potential binding mode and interactions of the non-steroidal aromatase inhibitors.

11.
Eur J Med Chem ; 240: 114569, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35834906

RESUMEN

One in every eight women will be diagnosed with breast cancer during their lifetime and approximately 70% of all patients are oestrogen receptor (ER) positive depending upon oestrogen for their growth accounting for third generation aromatase (CYP19A1) inhibitors being the mainstay in the treatment of ER-positive breast cancer. Despite the success of current aromatase inhibitors, acquired resistance occurs after prolonged therapy. Although the precise mechanisms of resistance are not known, lack of cross resistance among aromatase inhibitors drives the need for a newer generation of inhibitors to overcome this resistance alongside minimising toxicity and adverse effects. Novel triazole-based inhibitors were designed based on previously published parent compound 5a, making use of the now available crystal structure of CYP19A1 (PDB 3S79), to make modifications at specific sites to explore the potential of dual binding at both the active site and the access channel. Modifications included adding long chain substituents e.g. but-2-ynyloxy and pent-2-ynyloxy at different positions including the most active compound 13h with IC50 value in the low picomolar range (0.09 nM). Aromatase inhibition results paired with molecular dynamics studies provided a clear structure activity relationship and favourable dual binding mode was verified. Toxicity assays and CYP selectivity profile studies for some example compounds were performed to assess the safety profile of the prepared inhibitors providing the basis for the 4th generation nonsteroidal aromatase inhibitors.


Asunto(s)
Inhibidores de la Aromatasa , Neoplasias de la Mama , Aromatasa/metabolismo , Inhibidores de la Aromatasa/química , Inhibidores de la Aromatasa/farmacología , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Receptores de Estrógenos , Triazoles/farmacología
12.
ChemMedChem ; 17(23): e202200408, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36109340

RESUMEN

2-Difluoromethoxyestratriene derivatives were designed to improve potency and in vivo stability of the drug candidate 2-methoxyestradiol (2ME2). Compound evaluation in vitro against the proliferation of MCF-7 and MDA MB-231 breast cancer cells, as inhibitors of tubulin polymerisation and also steroid sulfatase (STS) both in cell lysates and in whole cells, showed promising activities. In antiproliferative assays 2-difluoromethoxyestradiol was less potent than 2ME2, but its sulfamates were often more potent than their corresponding non-fluorinated analogues. The fluorinated bis-sulfamate is a promising antiproliferative agent in MCF-7 cells (GI50 0.28 µM) vs the known 2-methoxyestradiol-3,17-O,O-bissulfamate (STX140, GI50 0.52 µM), confirming the utility of our approach. Compounds were also evaluated in the NCI 60-cell line panel and the fluorinated bis-sulfamate derivative displayed very good overall activities with a sub-micromolar average GI50 . It was a very potent STS inhibitor in whole JEG-3 cells (IC50 3.7 nM) similar to STX140 (4.2 nM) and additionally interferes with tubulin assembly in vitro and colchicine binding to tubulin. An X-ray study of 2-difluoromethoxy-3-benzyloxyestra-1,3,5(10)-trien-17-one examined conformational aspects of the fluorinated substituent. The known related derivative 2-difluoromethyl-3-sulfamoyloxyestrone was evaluated for STS inhibition in whole JEG-3 cells and showed an excellent IC50 of 55 pM.


Asunto(s)
Esteril-Sulfatasa , Tubulina (Proteína) , Línea Celular Tumoral
13.
Cancer Med ; 10(8): 2812-2825, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33742523

RESUMEN

The protein disulphide isomerase (PDI) gene family is a large, diverse group of enzymes recognised for their roles in disulphide bond formation within the endoplasmic reticulum (ER). PDI therefore plays an important role in ER proteostasis, however, it also shows involvement in ER stress, a characteristic recognised in multiple disease states, including cancer. While the exact mechanisms by which PDI contributes to tumorigenesis are still not fully understood, PDI exhibits clear involvement in the unfolded protein response (UPR) pathway. The UPR acts to alleviate ER stress through the activation of ER chaperones, such as PDI, which act to refold misfolded proteins, promoting cell survival. PDI also acts as an upstream regulator of the UPR pathway, through redox regulation of UPR stress receptors. This demonstrates the pro-protective roles of PDI and highlights PDI as a potential therapeutic target for cancer treatment. Recent research has explored the use of PDI inhibitors with PACMA 31 in particular, demonstrating promising anti-cancer effects in ovarian cancer. This review discusses the properties and functions of PDI family members and focuses on their potential as a therapeutic target for cancer treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Neoplasias/tratamiento farmacológico , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Animales , Humanos , Neoplasias/enzimología , Neoplasias/patología
14.
J Clin Endocrinol Metab ; 106(12): 3385-3397, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33739426

RESUMEN

CONTEXT: The adrenal cortex produces specific steroid hormones including steroid sulfates such as dehydroepiandrosterone sulfate (DHEAS), the most abundant steroid hormone in the human circulation. Steroid sulfation involves a multistep enzyme machinery that may be impaired by inborn errors of steroid metabolism. Emerging data suggest a role of steroid sulfates in the pathophysiology of adrenal tumors and as potential biomarkers. EVIDENCE ACQUISITION: Selective literature search using "steroid," "sulfat*," "adrenal," "transport," "mass spectrometry" and related terms in different combinations. EVIDENCE SYNTHESIS: A recent study highlighted the tissue abundance of estrogen sulfates to be of prognostic impact in adrenocortical carcinoma tissue samples using matrix-assisted laser desorption ionization mass spectrometry imaging. General mechanisms of sulfate uptake, activation, and transfer to substrate steroids are reasonably well understood. Key aspects of this pathway, however, have not been investigated in detail in the adrenal; these include the regulation of substrate specificity and the secretion of sulfated steroids. Both for the adrenal and targeted peripheral tissues, steroid sulfates may have relevant biological actions beyond their cognate nuclear receptors after desulfation. Impaired steroid sulfation such as low DHEAS in Cushing adenomas is of diagnostic utility, but more comprehensive studies are lacking. In bioanalytics, the requirement of deconjugation for gas-chromatography/mass-spectrometry has precluded the study of steroid sulfates for a long time. This limitation may be overcome by liquid chromatography/tandem mass spectrometry. CONCLUSIONS: A role of steroid sulfation in the pathophysiology of adrenal tumors has been suggested and a diagnostic utility of steroid sulfates as biomarkers is likely. Recent analytical developments may target sulfated steroids specifically.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/patología , Carcinoma Corticosuprarrenal/patología , Esteroides/química , Sulfatos/química , Sulfotransferasas/metabolismo , Neoplasias de las Glándulas Suprarrenales/metabolismo , Carcinoma Corticosuprarrenal/metabolismo , Animales , Humanos , Esteroides/metabolismo , Sulfatos/metabolismo
15.
Endocrinology ; 162(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33340399

RESUMEN

Androgens are the obligatory precursors of estrogens. In humans, classic androgen biosynthesis yields testosterone, thought to represent the predominant circulating active androgen both in men and women. However, recent work has shown that 11-ketotestosterone, derived from the newly described 11-oxygenated androgen biosynthesis pathway, makes a substantial contribution to the active androgen pool in women. Considering that classic androgens are the obligatory substrates for estrogen biosynthesis catalyzed by cytochrome P450 aromatase, we hypothesized that 11-oxygenated androgens are aromatizable. Here we use steroid analysis by tandem mass spectrometry to demonstrate that human aromatase generates 11-oxygenated estrogens from 11-oxygenated androgens in 3 different cell-based aromatase expression systems and in human ex vivo placenta explant cultures. We also show that 11-oxygenated estrogens are generated as a byproduct of the aromatization of classic androgens. We show that 11ß-hydroxy-17ß-estradiol binds and activates estrogen receptors α and ß and that 11ß-hydroxy-17ß-estradiol and the classic androgen pathway-derived active estrogen, 17ß-estradiol, are equipotent in stimulating breast cancer cell line proliferation and expression of estrogen-responsive genes. 11-oxygenated estrogens were, however, not detectable in serum from individuals with high aromatase levels (pregnant women) and elevated 11-oxygenated androgen levels (patients with congenital adrenal hyperplasia or adrenocortical carcinoma). Our data show that while 11-oxygenated androgens are aromatizable in vitro and ex vivo, the resulting 11-oxygenated estrogens are not detectable in circulation, suggesting that 11-oxygenated androgens function primarily as androgens in vivo.


Asunto(s)
Estrógenos/análogos & derivados , Estrógenos/sangre , Oxígeno/química , Animales , Aromatasa/metabolismo , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Estradiol/análogos & derivados , Estradiol/química , Estradiol/metabolismo , Estrógenos/química , Femenino , Sangre Fetal/química , Sangre Fetal/metabolismo , Células HEK293 , Humanos , Recién Nacido , Células MCF-7 , Placenta/química , Placenta/metabolismo , Embarazo/sangre , Unión Proteica/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Testosterona/análogos & derivados , Testosterona/sangre , Testosterona/química
17.
Mol Cell Endocrinol ; 301(1-2): 251-8, 2009 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-18786604

RESUMEN

17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) are responsible for the pre-receptor reduction/oxidation of steroids at the 17-position into active/inactive hormones, and the 15 known enzymes vary in their substrate specificity, localisation, and directional activity. 17beta-HSD Type 3 (17beta-HSD3) has been seen to be over-expressed in prostate cancer, and catalyses the reduction of androstenedione (Adione) to testosterone (T), which stimulates prostate tumour growth. Specific inhibitors of 17beta-HSD3 may have a role in the treatment of hormone-dependent prostate cancer and benign prostate hyperplasia, and also have potential as male anti-fertility agents. A 293-EBNA-based cell line with stable expression of transfected human 17beta-HSD3 was created and used to develop a whole cell radiometric TLC-based assay to assess the 17beta-HSD3 inhibitory potency of a series of compounds. STX2171 and STX2624 (IC(50) values in the 200-450nM range) were two of several active inhibitors identified. In similar TLC-based assays these compounds were found to be inactive against 17beta-HSD1 and 17beta-HSD2, indicating selectivity. A novel proof of concept model was developed to study the efficacy of the compounds in vitro using the androgen receptor positive hormone-dependent prostate cancer cell line, LNCaPwt, and its derivative, LNCaP[17beta-HSD3], transfected and selected for stable expression of 17beta-HSD3. The proliferation of the parental cell line was most efficiently stimulated by 5alpha-dihydrotestosterone (DHT), but the LNCaP[17beta-HSD3] cells were equally stimulated by Adione, indicating that 17beta-HSD3 efficiently converts Adione to T in this model. Adione-stimulated proliferation of LNCaP[17beta-HSD3] cells was inhibited in the presence of either STX2171 or STX2624. The compounds alone neither stimulated proliferation of the cells nor caused significant cell death, indicating that they are non-androgenic with low cytotoxicity. STX2171 inhibited Adione-stimulated growth of xenografts established from LNCaPwt cells in castrated mice in vivo. In conclusion, a primary screening assay and proof of concept model have been developed to study the efficacy of 17beta-HSD3 inhibitory compounds, which may have a role in the treatment of hormone-dependent cancer. Active compounds are selective for 17beta-HSD3 over 17beta-HSD1 and 17beta-HSD2, non-androgenic with low toxicity, and efficacious in both an in vitro proof of concept model and in an in vivo tumour model.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/farmacología , Hormonas/farmacología , Neoplasias de la Próstata/enzimología , 17-Hidroxiesteroide Deshidrogenasas/clasificación , Animales , Antineoplásicos/análisis , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/química , Humanos , Masculino , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Clin Cancer Res ; 14(20): 6469-77, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18927286

RESUMEN

PURPOSE: The production of E2 is paramount for the growth of estrogen receptor-positive breast cancer. Various strategies have been used, including the use of enzyme inhibitors against either aromatase (AROM) or steroid sulfatase (STS), in an attempt to ablate E2 levels. Both these enzymes play a critical role in the formation of estrogenic steroids and their inhibitors are now showing success in the clinic. EXPERIMENTAL DESIGN: We show here, in a xenograft nude mouse model, that the inhibition of both enzymes using STX681, a dual AROM and STS inhibitor (DASI), is a potential new therapeutic strategy against HDBC. MCF-7 cells stably expressing either AROM cDNA (MCF-7(AROM)) or STS cDNA (MCF-7(STS)) were generated. Ovariectomized MF-1 female nude mice receiving s.c. injections of either androstenedione (A(4)) or E2 sulfate and bearing either MCF-7(AROM) or MCF-7(STS) tumors were orally treated with STX64, letrozole, or STX681. Treatment was administered for 28 days. Mice were weighed and tumor measurements were taken weekly. RESULTS: STX64, a potent STS inhibitor, completely blocked MCF-7(STS) tumor growth but failed to attenuate MCF-7(AROM) tumor growth. In contrast, letrozole inhibited MCF-7(AROM) tumors but had no effect on MCF-7(STS) tumors. STX681 completely inhibited the growth of both tumors. AROM and STS activity was also completely inhibited by STX681, which was accompanied by a significant reduction in plasma E2 levels. CONCLUSIONS: This study indicates that targeting both the AROM and the STS enzyme with a DASI inhibits HDBC growth and is therefore a potentially novel treatment for this malignancy.


Asunto(s)
Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Hormono-Dependientes/tratamiento farmacológico , Esteril-Sulfatasa/antagonistas & inhibidores , Administración Oral , Animales , Azaesteroides/uso terapéutico , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/cirugía , Proliferación Celular/efectos de los fármacos , Estrógenos/sangre , Femenino , Humanos , Letrozol , Ratones , Ratones Desnudos , Neoplasias Hormono-Dependientes/enzimología , Neoplasias Hormono-Dependientes/cirugía , Nitrilos/uso terapéutico , Ovariectomía , Ratas , Ratas Wistar , Esteril-Sulfatasa/metabolismo , Resultado del Tratamiento , Triazoles/uso terapéutico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Clin Cancer Res ; 14(2): 597-606, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18223236

RESUMEN

PURPOSE: The aim of these studies was to characterize the action of STX140 in a P-glycoprotein-overexpressing tumor cell line both in vitro and in vivo. In addition, its efficacy was determined against xenografts derived from patients who failed docetaxel therapy. EXPERIMENTAL DESIGN: The effects of STX140, Taxol, and 2-methoxyestradiol (2-MeOE2) on cell proliferation, cell cycle, and apoptosis were assessed in vitro in drug-resistant cells (MCF-7(DOX)) and the parental cell line (MCF-7(WT)). Mice bearing an MCF-7(DOX) tumor on one flank and an MCF-7(WT) tumor on the other flank were used to assess the in vivo efficacy. Furthermore, the responses to STX140 of three xenografts, derived from drug-resistant patients, were assessed. RESULTS: In this study, STX140 caused cell cycle arrest, cyclin B1 induction, and subsequent apoptosis of both MCF-7(DOX) and MCF-7(WT) cells. Taxol and 2-MeOE2 were only active in the MCF-7(WT) parental cell line. Although both STX140 and Taxol inhibited the growth of xenografts derived from MCF-7(WT) cells, only STX140 inhibited the growth of tumors derived from MCF-7(DOX) cells. 2-MeOE2 was ineffective at the dose tested against both tumor types. Two out of the three newly derived docetaxel-resistant xenografts, including a metastatic triple-negative tumor, responded to STX140 but not to docetaxel treatment. CONCLUSIONS: STX140 shows excellent efficacy in both MCF-7(WT) and MCF-7(DOX) breast cancer xenograft models, in contrast to Taxol and 2-MeOE2. The clinical potential of STX140 was further highlighted by the efficacy seen in xenografts recently derived from patients who had failed on taxane therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Estrenos/uso terapéutico , Paclitaxel/uso terapéutico , 2-Metoxiestradiol , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Estradiol/análogos & derivados , Estradiol/uso terapéutico , Humanos , Ratones , Ratones Desnudos , Moduladores de Tubulina/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Mol Cancer Ther ; 7(8): 2435-44, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18723489

RESUMEN

An improved steroid sulfatase inhibitor was prepared by replacing the N-propyl group of the second-generation steroid-like inhibitor (2) with a N-3,3,3-trifluoropropyl group to give (10). This compound is 5-fold more potent in vitro, completely inhibits rat liver steroid sulfatase activity after a single oral dose of 0.5 mg/kg, and exhibits a significantly longer duration of inhibition over (2). These biological properties are attributed to the increased lipophilicity and metabolic stability of (10) rendered by its trifluoropropyl group and also the potential H-bonding between its fluorine atom(s) and Arg(98) in the active site of human steroid sulfatase. Like other sulfamates, (10) is expected to be sequestered, and transported by, erythrocytes in vivo because it inhibits human carbonic anhydrase II (hCAII) potently (IC(50), 3 nmol/L). A congener (4), which possesses a N-(pyridin-3-ylmethyl) substituent, is even more active (IC(50), 0.1 nmol/L). To rationalize this, the hCAII-(4) adduct, obtained by cocrystallization, reveals not only the sulfamate group and the backbone of (4) interacting with the catalytic site and the associated hydrophobic pocket, respectively, but also the potential H-bonding between the N-(pyridin-3-ylmethyl) group and Nepsilon(2) of Gln(136). Like (2), both (10) and its phenolic precursor (9) are non-estrogenic using a uterine weight gain assay. In summary, a highly potent, long-acting, and nonestrogenic steroid sulfatase inhibitor was designed with hCAII inhibitory properties that should positively influence in vivo behavior. Compound (10) and other related inhibitors of this structural class further expand the armory of steroid sulfatase inhibitors against hormone-dependent breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Flúor/química , Esteril-Sulfatasa/antagonistas & inhibidores , Animales , Cromatografía Liquida , Cristalografía por Rayos X , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Proteica , Ratas , Ratas Wistar , Espectrometría de Masa por Ionización de Electrospray , Esteril-Sulfatasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA