Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Heredity (Edinb) ; 117(5): 383-392, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27485669

RESUMEN

The genetic basis of phenotypic changes in extreme environments is a key but rather unexplored topic in animal evolution. Here we provide an exemplar case of evolution by relaxed selection in the Somalian cavefish Phreatichthys andruzzii that has evolved in the complete absence of light for at least 2.8 million years. This has resulted in extreme degenerative phenotypes, including complete eye loss and partial degeneration of the circadian clock. We have investigated the molecular evolution of the nonvisual photoreceptor melanopsin opn4m2, whose mutation contributes to the inability of peripheral clocks to respond to light. Our intra- and inter-species analyses suggest that the 'blind' clock in P. andruzzii evolved because of the loss of selective constraints on a trait that was no longer adaptive. Based on this change in selective regime, we estimate that the functional constraint on cavefish opn4m2 was relaxed at ∼5.3 Myr. This implies a long subterranean history, about half in complete isolation from the surface. The visual photoreceptor rhodopsin, expressed in the brain and implicated in photophobic behavior, shows similar evolutionary patterns, suggesting that extreme isolation in darkness led to a general weakening of evolutionary constraints on light-responsive mechanisms. Conversely, the same genes are still conserved in Garra barreimiae, a cavefish from Oman, that independently and more recently colonized subterranean waters and evolved troglomorphic traits. Our results contribute substantially to the open debate on the genetic bases of regressive evolution.


Asunto(s)
Cuevas , Cyprinidae/genética , Evolución Molecular , Opsinas de Bastones/genética , Animales , Evolución Biológica , Relojes Circadianos , Cyprinidae/fisiología , Proteínas de Peces/genética , Luz , Fenotipo , Rodopsina/genética , Selección Genética
2.
Neuron ; 10(4): 655-65, 1993 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-8386526

RESUMEN

Changes in cAMP levels are often associated with the modulation of neuronal function. The CREM gene encodes both antagonists and activators of the cAMP-dependent transcriptional response by alternative splicing. CREM transcripts in rat brain show a characteristic pattern of expression, being specific for the inner layer of the cerebral cortex, anterior thalamus, hippocampus, and hypothalamus. Strikingly, the CREM transcripts correspond to the antagonist isoforms in these areas, suggesting a down-regulatory role for CREM in brain; in contrast, the expression of CREM tau and CREB activators is more diffuse and generalized. In the supraoptic nucleus, CREM expression is induced after osmotic stimulus. Importantly, this demonstrates physiological inducibility of CREM, which is novel within the CRE/ATF family.


Asunto(s)
Encéfalo/fisiología , AMP Cíclico/farmacología , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas Represoras , Transcripción Genética , Animales , Secuencia de Bases , Modulador del Elemento de Respuesta al AMP Cíclico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Expresión Génica , Regulación de la Expresión Génica , Genes fos , Hibridación in Situ , Isomerismo , Sondas Moleculares/genética , Datos de Secuencia Molecular , Neuronas/fisiología , Ósmosis , Ratas , Núcleo Supraóptico/fisiología , Distribución Tisular
3.
Nat Neurosci ; 1(8): 701-7, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10196586

RESUMEN

The only vertebrate clock gene identified by mutagenesis is mouse Clock, which encodes a bHLH-PAS transcription factor. We have cloned Clock in zebrafish and show that, in contrast to its mouse homologue, it is expressed with a pronounced circadian rhythm in the brain and in two defined pacemaker structures, the eye and the pineal gland. Clock oscillation was also found in other tissues, including kidney and heart. In these tissues, expression of Clock continues to oscillate in vitro. This demonstrates that self-sustaining circadian oscillators exist in several vertebrate organs, as was previously reported for invertebrates.


Asunto(s)
Ritmo Circadiano/fisiología , Transactivadores/metabolismo , Pez Cebra/fisiología , Secuencia de Aminoácidos/genética , Animales , Encéfalo/metabolismo , Proteínas CLOCK , Ojo/metabolismo , Riñón/metabolismo , Datos de Secuencia Molecular , Miocardio/metabolismo , Oscilometría , Glándula Pineal/metabolismo , Bazo/metabolismo , Distribución Tisular/fisiología , Pez Cebra/genética , Pez Cebra/metabolismo
4.
J Neuroendocrinol ; 19(1): 46-53, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17184485

RESUMEN

Pineal serotonin-N-acetyltransferase (arylalkylamine-N-acetyltransferase; AANAT) is considered the key enzyme in the generation of circulating melatonin rhythms; the rate of melatonin production is determined by AANAT activity. In all the examined species, AANAT activity is regulated at the post-translational level and, to a variable degree, also at the transcriptional level. Here, the transcriptional regulation of pineal aanat (aanat2) of the gilthead seabream (Sparus aurata) was investigated. Real-time polymerase chain reaction quantification of aanat2 mRNA levels in the pineal gland collected throughout the 24-h cycle revealed a rhythmic expression pattern. In cultured pineal glands, the amplitude was reduced, but the daily rhythmic expression pattern was maintained under constant illumination, indicating a circadian clock-controlled regulation of seabream aanat2. DNA constructs were prepared in which green fluorescent protein was driven by the aanat2 promoters of seabream and Northern pike. In vivo transient expression analyses in zebrafish embryos indicated that these promoters contain the necessary elements to drive enhanced expression in the pineal gland. In the light-entrainable clock-containing PAC-2 zebrafish cell line, a stably transfected seabream aanat2 promoter-luciferase DNA construct exhibited a clock-controlled circadian rhythm of luciferase activity, characteristic for an E-box-driven expression. In NIH-3T3 cells, the seabream aanat2 promoter was activated by a synergistic action of BMAL/CLOCK and orthodenticle homeobox 5 (OTX5). Promoter sequence analyses revealed the presence of the photoreceptor conserved element and an extended E-box (i.e. the binding sites for BMAL/CLOCK and OTX5 that have been previously associated with pineal-specific and rhythmic gene expression). These results suggest that seabream aanat2 is a clock-controlled gene that is regulated by conserved mechanisms.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/genética , Regulación Enzimológica de la Expresión Génica , Glándula Pineal/enzimología , Dorada/genética , Animales , Relojes Biológicos , Proteínas CLOCK , Células Cultivadas , Ritmo Circadiano , Embrión no Mamífero , Proteínas de Homeodominio/metabolismo , Ratones , Células 3T3 NIH , Especificidad de Órganos , Factores de Transcripción Otx/metabolismo , Regiones Promotoras Genéticas , Transactivadores/metabolismo , Pez Cebra
5.
Mol Cell Biol ; 11(1): 192-201, 1991 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-1824713

RESUMEN

Proteins encoded by the adenovirus E1A oncogene are capable of positive and negative transcriptional regulation of both viral and cellular genes. E1A regulatory function is commonly thought to involve modifications of specific cellular factors that interact with responsive promoters. In this report we present evidence that E1A induces the activity of the jun/AP-1 transcription factor in three different cell types: P19, JEG-3, and HeLa. AP-1 binds to 12-O-tetradecanoylphorbol-13-acetate (TPA)-responsive elements (TREs); therefore, E1A might modulate a specific signal transduction pathway normally induced by activation of the protein kinase C. Binding of jun/AP-1 to a TRE is induced in all cell types studied when E1A is expressed. We observe that the expression of endogenous c-jun and jun B genes is induced by E1A, which directly transactivates the promoters of c-fos, c-jun, and jun B. Similar inducibility is obtained by treatment with retinoic acid and differentiation of P19-embryonal carcinoma cells. The E1A 13S product transactivates TRE sequences and cooperates with c-jun in the transcriptional stimulation. The 12S E1A product does not activate a TRE sequence, but cotransfection with c-jun circumvents this lack of stimulation. Coexpression of c-fos and E1A 12S, however, blocks the transactivation by c-jun, suggesting an important role for fos in determining the dominance of the 12S or 13S protein.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Proteínas Oncogénicas Virales/fisiología , Proteínas Proto-Oncogénicas/fisiología , Factores de Transcripción/fisiología , Transcripción Genética , Proteínas Precoces de Adenovirus , Diferenciación Celular , Transformación Celular Viral , Humanos , Técnicas In Vitro , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-fos , Proteínas Proto-Oncogénicas c-jun , Secuencias Reguladoras de Ácidos Nucleicos , Acetato de Tetradecanoilforbol/farmacología , Tretinoina/farmacología , Células Tumorales Cultivadas
6.
Mol Cell Biol ; 15(6): 3301-9, 1995 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-7760825

RESUMEN

Cyclin A is a pivotal regulatory protein which, in mammalian cells, is involved in the S phase of the cell cycle. Transcription of the human cyclin A gene is cell cycle regulated. We have investigated the role of the cyclic AMP (cAMP)-dependent signalling pathway in this cell cycle-dependent control. In human diploid fibroblasts (Hs 27), induction of cyclin A gene expression at G1/S is stimulated by 8-bromo-cAMP and suppressed by the protein kinase A inhibitor H89, which was found to delay S phase entry. Transfection experiments showed that the cyclin A promoter is inducible by activation of the adenylyl cyclase signalling pathway. Stimulation is mediated predominantly via a cAMP response element (CRE) located at positions -80 to -73 with respect to the transcription initiation site and is able to bind CRE-binding proteins and CRE modulators. Moreover, activation by phosphorylation of the activators CRE-binding proteins and CRE modulator tau and levels of the inducible cAMP early repressor are cell cycle regulated, which is consistent with the pattern of cyclin A inducibility by cAMP during the cell cycle. These results suggest that the CRE is, at least partly, implicated in stimulation of cyclin A transcription at G1/S.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Ciclinas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Represoras , Secuencia de Bases , Ciclo Celular/genética , Células Cultivadas , AMP Cíclico/farmacología , Modulador del Elemento de Respuesta al AMP Cíclico , Ciclinas/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Transducción de Señal
7.
Trends Neurosci ; 20(10): 487-92, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9347618

RESUMEN

Adaptation to a changing environment is an essential feature of physiological regulation. The day-night rhythm is translated into hormonal oscillations governing the metabolism of all living organisms. In mammals the pineal gland is responsible for the synthesis of the hormone melatonin in response to signals originating from the endogenous clock located in the hypothalamic suprachiasmatic nucleus (SCN). The molecular mechanisms involved in rhythmic synthesis of melatonin involve the cAMP response element modulator (crem) gene, which encodes transcription factors responsive to activation of the cAMP signalling pathway. The CREM product, inducible cAMP early repressor (ICER), is rhythmically expressed and participates in a transcriptional autoregulatory loop that also controls the amplitude of oscillations of 5-HT N-acetyl transferase, the rate-limiting enzyme of melatonin synthesis. Thus, a transcription factor modulates the oscillatory levels of a hormone.


Asunto(s)
Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Melatonina/biosíntesis , Melatonina/genética , Transcripción Genética/fisiología , Animales , Humanos , Glándula Pineal/fisiología , Sistemas de Mensajero Secundario/fisiología
8.
J Mol Endocrinol ; 36(2): 337-47, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16595704

RESUMEN

Daily rhythms of melatonin production are controlled by changes in the activity of arylalkylamine-N-acetyltransferase (AANAT). Zebrafish possess two aanats, aanat1 and aanat2; the former is expressed only in the retina and the latter is expressed in both the retina and the pineal gland. Here, their differential expression and regulation were studied using transcript quantification and transient and stable in vivo and in vitro transfection assays. In the pineal gland, the aanat2 promoter exhibited circadian clock-controlled activity, as indicated by circadian rhythms of Enhanced green fluorescent protein (EGFP) mRNA in AANAT2:EGFP transgenic fish. In vivo transient expression analyses of the aanat2 promoter indicated that E-box and photoreceptor conserved elements (PCE) are required for expression in the pineal gland. In the retina, the expression of both genes was characterized by a robust circadian rhythm of their transcript levels. In constant darkness, the rhythmic expression of retinal aanat2 persisted while the aanat1 rhythm disappeared; indicating that the former is controlled by a circadian clock and the latter is also light driven. In the light-entrainable clock-containing PAC-2 zebrafish cell line, both stably transfected aanat1 and aanat2 promoters exhibited a clock-controlled circadian rhythm, characteristic for an E-box-driven expression. Transient co-transfection experiments in NIH-3T3 cells revealed that the two, E-box- and PCE-containing, promoters are driven by the synergistic action of BMAL/CLOCK and orthehodenticle homeobox 5. This study has revealed a shared mechanism for the regulation of two related genes, yet describes their differential phases and photic responses which may be driven by other gene-specific regulatory mechanisms and tissue-specific transcription factor profiles.


Asunto(s)
N-Acetiltransferasa de Arilalquilamina/genética , N-Acetiltransferasa de Arilalquilamina/metabolismo , Ritmo Circadiano/fisiología , Pez Cebra/genética , Pez Cebra/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas CLOCK , Línea Celular , Dimerización , Regulación Enzimológica de la Expresión Génica , Isoenzimas/genética , Isoenzimas/metabolismo , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Mensajero/genética , Ratas , Elementos Reguladores de la Transcripción/genética , Retina/enzimología , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Curr Opin Neurobiol ; 8(5): 635-41, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9811634

RESUMEN

Over the past year, the first components of the mammalian clock have been identified; Clock, bmal1 and three homologs of Drosophila period have been cloned, all of which encode PAS proteins. Expression of the mammalian period gene oscillates in many tissues in vivo and in immortalized cell cultures in vitro. Now, can we say that every cell has a circadian clock?


Asunto(s)
Relojes Biológicos/fisiología , Proteínas de Unión al ADN , Proteínas Nucleares/fisiología , Receptores de Hidrocarburo de Aril , Núcleo Supraquiasmático/citología , Factores de Transcripción/fisiología , Factores de Transcripción ARNTL , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas de Drosophila , Mamíferos , Proteínas Nucleares/química , Proteínas Circadianas Period , Estructura Terciaria de Proteína , Núcleo Supraquiasmático/química , Núcleo Supraquiasmático/fisiología , Factores de Transcripción/química
10.
Adv Genet ; 95: 1-30, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27503352

RESUMEN

The utility of any model species cannot be judged solely in terms of the tools and approaches it provides for genetic analysis. A fundamental consideration is also how its biology has been shaped by the environment and the ecological niche which it occupies. By comparing different species occupying very different habitats we can learn how molecular and cellular mechanisms change during evolution in order to optimally adapt to their environment. Such knowledge is as important as understanding how these mechanisms work. This is illustrated by the use of fish models for studying the function and evolution of the circadian clock. In this review we outline our current understanding of how fish clocks sense and respond to light and explain how this differs fundamentally from the situation with mammalian clocks. In addition, we present results from comparative studies involving two species of blind cavefish, Astyanax mexicanus and Phreatichthys andruzzii. This work reveals the consequences of evolution in perpetual darkness for the circadian clock and its regulation by light as well as for other mechanisms such as DNA repair, sleep, and metabolism which directly or indirectly are affected by regular exposure to sunlight. Major differences in the cave habitats inhabited by these two cavefish species have a clear impact on shaping the molecular and cellular adaptations to life in complete darkness.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Peces/fisiología , Vertebrados/fisiología , Animales , Evolución Biológica , Reparación del ADN/fisiología , Ecosistema , Luz , Sueño/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA