Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(6): 2069-2084, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38763511

RESUMEN

The peroxisomal disease adrenoleukodystrophy (X-ALD) is caused by loss of the transporter of very-long-chain fatty acids (VLCFAs), ABCD1. An excess of VLCFAs disrupts essential homeostatic functions crucial for axonal maintenance, including redox metabolism, glycolysis and mitochondrial respiration. As mitochondrial function and morphology are intertwined, we set out to investigate the role of mitochondrial dynamics in X-ALD models. Using quantitative 3D transmission electron microscopy, we revealed mitochondrial fragmentation in corticospinal axons in Abcd1- mice. In patient fibroblasts, an excess of VLCFAs triggers mitochondrial fragmentation through the redox-dependent phosphorylation of DRP1 (DRP1S616). The blockade of DRP1-driven fission by the peptide P110 effectively preserved mitochondrial morphology. Furthermore, mRNA inhibition of DRP1 not only prevented mitochondrial fragmentation but also protected axonal health in a Caenorhabditis elegans model of X-ALD, underscoring DRP1 as a potential therapeutic target. Elevated levels of circulating cell-free mtDNA in patients' CSF align this leukodystrophy with primary mitochondrial disorders. Our findings underscore the intricate interplay between peroxisomal dysfunction, mitochondrial dynamics and axonal integrity in X-ALD, shedding light on potential avenues for therapeutic intervention.


Asunto(s)
Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP , Adrenoleucodistrofia , Dinaminas , Dinámicas Mitocondriales , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/patología , Adrenoleucodistrofia/genética , Animales , Dinámicas Mitocondriales/fisiología , Humanos , Ratones , Dinaminas/metabolismo , Dinaminas/genética , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/genética , Caenorhabditis elegans , Mitocondrias/metabolismo , Mitocondrias/patología , Axones/patología , Axones/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Masculino , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Modelos Animales de Enfermedad , Tractos Piramidales/patología , Tractos Piramidales/metabolismo , Fragmentos de Péptidos , GTP Fosfohidrolasas
2.
Neuropathol Appl Neurobiol ; 48(1): e12747, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34237158

RESUMEN

AIMS: Mitochondrial dysfunction and inflammation are at the core of axonal degeneration in several multifactorial neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. The transcriptional coregulator RIP140/NRIP1 (receptor-interacting protein 140) modulates these functions in liver and adipose tissue, but its role in the nervous system remains unexplored. Here, we investigated the impact of RIP140 in the Abcd1- mouse model of X-linked adrenoleukodystrophy (X-ALD), a genetic model of chronic axonopathy involving the convergence of redox imbalance, bioenergetic failure, and chronic inflammation. METHODS AND RESULTS: We provide evidence that RIP140 is modulated through a redox-dependent mechanism driven by very long-chain fatty acids (VLCFAs), the levels of which are increased in X-ALD. Genetic inactivation of RIP140 prevented mitochondrial depletion and dysfunction, bioenergetic failure, inflammatory dysregulation, axonal degeneration and associated locomotor disabilities in vivo in X-ALD mouse models. CONCLUSIONS: Together, these findings show that aberrant overactivation of RIP140 promotes neurodegeneration in X-ALD, underscoring its potential as a therapeutic target for X-ALD and other neurodegenerative disorders that present with metabolic and inflammatory dyshomeostasis.


Asunto(s)
Adrenoleucodistrofia , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/uso terapéutico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animales , Modelos Animales de Enfermedad , Homeostasis , Ratones , Mitocondrias/metabolismo , Proteína de Interacción con Receptores Nucleares 1
3.
Acta Neuropathol ; 144(2): 241-258, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35778568

RESUMEN

Aberrant endocannabinoid signaling accompanies several neurodegenerative disorders, including multiple sclerosis. Here, we report altered endocannabinoid signaling in X-linked adrenoleukodystrophy (X-ALD), a rare neurometabolic demyelinating syndrome caused by malfunction of the peroxisomal ABCD1 transporter, resulting in the accumulation of very long-chain fatty acids (VLCFAs). We found abnormal levels of cannabinoid receptor 2 (CB2r) and related endocannabinoid enzymes in the brain and peripheral blood mononuclear cells (PBMCs) of X-ALD patients and in the spinal cord of a murine model of X-ALD. Preclinical treatment with a selective agonist of CB2r (JWH133) halted axonal degeneration and associated locomotor deficits, along with normalization of microgliosis. Moreover, the drug improved the main metabolic disturbances underlying this model, particularly in redox and lipid homeostatic pathways, including increased lipid droplets in motor neurons, through the modulation of the GSK-3ß/NRF2 axis. JWH133 inhibited Reactive Oxygen Species elicited by excess VLCFAs in primary microglial cultures of Abcd1-null mice. Furthermore, we uncovered intertwined redox and CB2r signaling in the murine spinal cords and in patient PBMC samples obtained from a phase II clinical trial with antioxidants (NCT01495260). These findings highlight CB2r signaling as a potential therapeutic target for X-ALD and perhaps other neurodegenerative disorders that present with dysregulated redox and lipid homeostasis.


Asunto(s)
Adrenoleucodistrofia , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP , Adrenoleucodistrofia/tratamiento farmacológico , Animales , Ensayos Clínicos Fase II como Asunto , Endocannabinoides/uso terapéutico , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Leucocitos Mononucleares/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Receptores de Cannabinoides/metabolismo , Receptores de Cannabinoides/uso terapéutico
4.
J Med Genet ; 57(2): 132-137, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31586945

RESUMEN

BACKGROUND: Since 1994, over 50 families affected by the episodic ataxia type 1 disease spectrum have been described with mutations in KCNA1, encoding the voltage-gated K+ channel subunit Kv1.1. All of these mutations are either transmitted in an autosomal-dominant mode or found as de novo events. METHODS: A patient presenting with a severe combination of dyskinesia and neonatal epileptic encephalopathy was sequenced by whole-exome sequencing (WES). A candidate variant was tested using cellular assays and patch-clamp recordings. RESULTS: WES revealed a homozygous variant (p.Val368Leu) in KCNA1, involving a conserved residue in the pore domain, close to the selectivity signature sequence for K+ ions (TVGYG). Functional analysis showed that mutant protein alone failed to produce functional channels in homozygous state, while coexpression with wild-type produced no effects on K+ currents, similar to wild-type protein alone. Treatment with oxcarbazepine, a sodium channel blocker, proved effective in controlling seizures. CONCLUSION: This newly identified variant is the first to be reported to act in a recessive mode of inheritance in KCNA1. These findings serve as a cautionary tale for the diagnosis of channelopathies, in which an unreported phenotypic presentation or mode of inheritance for the variant of interest can hinder the identification of causative variants and adequate treatment choice.


Asunto(s)
Ataxia/genética , Discinesias/genética , Epilepsia/genética , Canal de Potasio Kv.1.1/genética , Miocimia/genética , Ataxia/diagnóstico , Ataxia/tratamiento farmacológico , Ataxia/patología , Canalopatías/diagnóstico , Canalopatías/tratamiento farmacológico , Canalopatías/genética , Canalopatías/patología , Niño , Preescolar , Discinesias/diagnóstico , Discinesias/tratamiento farmacológico , Discinesias/patología , Epilepsia/diagnóstico , Epilepsia/tratamiento farmacológico , Epilepsia/patología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Homocigoto , Humanos , Lactante , Recién Nacido , Canal de Potasio Kv.1.1/ultraestructura , Masculino , Mutación/genética , Miocimia/diagnóstico , Miocimia/tratamiento farmacológico , Miocimia/patología , Oxcarbazepina/administración & dosificación , Oxcarbazepina/efectos adversos , Linaje , Secuenciación del Exoma
5.
Clin Genet ; 98(1): 91-98, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32335897

RESUMEN

Pathogenic variants in HNRNPH1 were first reported in 2018. The reported individual, a 13 year old boy with a c.616C>T (p.R206W) variant in the HNRNPH1 gene, was noted to have overlapping symptoms with those observed in HNRNPH2-related X-linked intellectual disability, Bain type (MRXSB), specifically intellectual disability and dysmorphic features. While HNRNPH1 variants were initially proposed to represent an autosomal cause of MRXSB, we report an additional seven cases which identify phenotypic differences from MRXSB. Patients with HNRNPH1 pathogenic variants diagnosed via WES were identified using clinical networks and GeneMatcher. Features unique to individuals with HNRNPH1 variants include distinctive dysmorphic facial features; an increased incidence of congenital anomalies including cranial and brain abnormalities, genitourinary malformations, and palate abnormalities; increased incidence of ophthalmologic abnormalities; and a decreased incidence of epilepsy and cardiac defects compared to those with MRXSB. This suggests that pathogenic variants in HNRNPH1 result in a related, but distinct syndromic cause of intellectual disability from MRXSB, which we refer to as HNRNPH1-related syndromic intellectual disability.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Adulto , Niño , Preescolar , Epilepsia/genética , Femenino , Genes Ligados a X/genética , Humanos , Lactante , Recién Nacido , Masculino , Fenotipo , Síndrome , Adulto Joven
6.
J Med Genet ; 56(12): 846-849, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31004048

RESUMEN

BACKGROUND: Alexander disease, an autosomal dominant leukodystrophy, is caused by missense mutations in GFAP. Although mostly diagnosed in children, associated with severe leukoencephalopathy, milder adult forms also exist. METHODS: A family affected by adult-onset spastic paraplegia underwent neurological examination and cerebral MRI. Two patients were sequenced by whole exome sequencing (WES). A candidate variant was functionally tested in an astrocytoma cell line. RESULTS: The novel variant in GFAP (Glial Fibrillary Acidic Protein) N-terminal head domain (p.Gly18Val) cosegregated in multiple relatives (LOD score: 2.7). All patients, even those with the mildest forms, showed characteristic signal changes or atrophy in the brainstem and spinal cord MRIs, and abnormal MRS. In vitro, this variant did not cause significant protein aggregation, in contrast to most Alexander disease mutations characterised so far. However, cell area analysis showed larger size, a feature previously described in patients and mouse models. CONCLUSION: We suggest that this variant causes variable expressivity and an attenuated phenotype of Alexander disease type II, probably associated with alternative pathogenic mechanisms, that is, astrocyte enlargement. GFAP analysis should be considered in adult-onset neurological presentations with pyramidal and bulbar symptoms, in particular when characteristic findings, such as the tadpole sign, are present in MRI. WES is a powerful tool to diagnose atypical cases.


Asunto(s)
Enfermedad de Alexander/diagnóstico , Enfermedad de Alexander/genética , Proteína Ácida Fibrilar de la Glía/genética , Adolescente , Adulto , Anciano , Enfermedad de Alexander/diagnóstico por imagen , Enfermedad de Alexander/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Fenotipo , Secuenciación del Exoma , Adulto Joven
7.
Hum Mol Genet ; 24(24): 6861-76, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26370417

RESUMEN

X-linked adrenomyeloneuropathy (AMN) is an inherited neurometabolic disorder caused by malfunction of the ABCD1 gene, characterized by slowly progressing spastic paraplegia affecting corticospinal tracts, and adrenal insufficiency. AMN is the most common phenotypic manifestation of adrenoleukodystrophy (X-ALD). In some cases, an inflammatory cerebral demyelination occurs associated to poor prognosis in cerebral AMN (cAMN). Though ABCD1 codes for a peroxisomal transporter of very long-chain fatty acids, the molecular mechanisms that govern disease onset and progression, or its transformation to a cerebral, inflammatory demyelinating form, remain largely unknown. Here we used an integrated -omics approach to identify novel biomarkers and altered network dynamic characteristic of, and possibly driving, the disease. We combined an untargeted metabolome assay of plasma and peripheral blood mononuclear cells (PBMC) of AMN patients, which used liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (LC-Q-TOF), with a functional genomics analysis of spinal cords of Abcd1(-) mouse. The results uncovered altered nodes in lipid-driven proinflammatory cascades, such as glycosphingolipid and glycerophospholipid synthesis, governed by the ß-1,4-galactosyltransferase (B4GALT6), the phospholipase 2γ (PLA2G4C) and the choline/ethanolamine phosphotransferase (CEPT1) enzymes. Confirmatory investigations revealed a non-classic, inflammatory profile, consisting on the one hand of raised plasma levels of several eicosanoids derived from arachidonic acid through PLA2G4C activity, together with also the proinflammatory cytokines IL6, IL8, MCP-1 and tumor necrosis factor-α. In contrast, we detected a more protective, Th2-shifted response in PBMC. Thus, our findings illustrate a previously unreported connection between ABCD1 dysfunction, glyco- and glycerolipid-driven inflammatory signaling and a fine-tuned inflammatory response underlying a disease considered non-inflammatory.


Asunto(s)
Adrenoleucodistrofia/sangre , Glicerofosfolípidos/sangre , Glucolípidos/sangre , Mediadores de Inflamación/metabolismo , Transducción de Señal , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP , Transportadoras de Casetes de Unión a ATP/genética , Adrenoleucodistrofia/genética , Adulto , Animales , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
8.
Acta Neuropathol ; 133(2): 283-301, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28004277

RESUMEN

The activation of the highly conserved unfolded protein response (UPR) is prominent in the pathogenesis of the most prevalent neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), which are classically characterized by an accumulation of aggregated or misfolded proteins. This activation is orchestrated by three endoplasmic reticulum (ER) stress sensors: PERK, ATF6 and IRE1. These sensors transduce signals that induce the expression of the UPR gene programme. Here, we first identified an early activator of the UPR and investigated the role of a chronically activated UPR in the pathogenesis of X-linked adrenoleukodystrophy (X-ALD), a neurometabolic disorder that is caused by ABCD1 malfunction; ABCD1 transports very long-chain fatty acids (VLCFA) into peroxisomes. The disease manifests as inflammatory demyelination in the brain or and/or degeneration of corticospinal tracts, thereby resulting in spastic paraplegia, with the accumulation of intracellular VLCFA instead of protein aggregates. Using X-ALD mouse model (Abcd1 - and Abcd1 - /Abcd2 -/- mice) and X-ALD patient's fibroblasts and brain samples, we discovered an early engagement of the UPR. The response was characterized by the activation of the PERK and ATF6 pathways, but not the IRE1 pathway, showing a difference from the models of AD, PD or ALS. Inhibition of PERK leads to the disruption of homeostasis and increased apoptosis during ER stress induced in X-ALD fibroblasts. Redox imbalance appears to be the mechanism that initiates ER stress in X-ALD. Most importantly, we demonstrated that the bile acid tauroursodeoxycholate (TUDCA) abolishes UPR activation, which results in improvement of axonal degeneration and its associated locomotor impairment in Abcd1 - /Abcd2 -/- mice. Altogether, our preclinical data provide evidence for establishing the UPR as a key drug target in the pathogenesis cascade. Our study also highlights the potential role of TUDCA as a treatment for X-ALD and other axonopathies in which similar molecular mediators are implicated.


Asunto(s)
Adrenoleucodistrofia/fisiopatología , Axones/efectos de los fármacos , Degeneración Nerviosa/fisiopatología , Ácido Tauroquenodesoxicólico/farmacología , Respuesta de Proteína Desplegada/fisiología , Animales , Axones/patología , Humanos , Ratones , Ratones Noqueados
9.
Acta Neuropathol ; 129(3): 399-415, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25549970

RESUMEN

X-linked adrenoleukodystrophy (X-ALD) is a rare neurometabolic disease characterized by the accumulation of very long chain fatty acids (VLCFAs) due to a loss of function of the peroxisomal transporter ABCD1. Here, using in vivo and in vitro models, we demonstrate that autophagic flux was impaired due to elevated mammalian target of rapamycin (mTOR) signaling, which contributed to X-ALD pathogenesis. We also show that excess VLCFAs downregulated autophagy in human fibroblasts. Furthermore, mTOR inhibition by a rapamycin derivative (temsirolimus) restored autophagic flux and inhibited the axonal degenerative process as well as the associated locomotor impairment in the Abcd1 (-) /Abcd2 (-/-) mouse model. This process was mediated through the restoration of proteasome function and redox as well as metabolic homeostasis. These findings provide the first evidence that links impaired autophagy to X-ALD, which may yield a therapy based on autophagy activators for adrenomyeloneuropathy patients.


Asunto(s)
Adrenoleucodistrofia/patología , Adrenoleucodistrofia/fisiopatología , Autofagia/fisiología , Degeneración Nerviosa/fisiopatología , Adulto , Animales , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Degeneración Nerviosa/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo
11.
Mol Pharmacol ; 86(5): 505-13, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25123288

RESUMEN

Fenofibrate is a peroxisome proliferator-activated receptor (PPAR) α ligand that has been widely used as a lipid-lowering agent in the treatment of hypertriglyceridemia. ABCD2 (D2) is a peroxisomal long-chain acyl-CoA transporter that is highly induced by fenofibrate in the livers of mice. To determine whether D2 is a modifier of fibrate responses, wild-type and D2-deficient mice were treated with fenofibrate for 14 days. The absence of D2 altered expression of gene clusters associated with lipid metabolism, including PPARα signaling. Using 3T3-L1 adipocytes, which express high levels of D2, we confirmed that knockdown of D2 modified genomic responses to fibrate treatment. We next evaluated the impact of D2 on effects of fibrates in a mouse model of diet-induced obesity. Fenofibrate treatment opposed the development of obesity, hypertriglyceridemia, and insulin resistance. However, these effects were unaffected by D2 genotype. We concluded that D2 can modulate genomic responses to fibrates, but that these effects are not sufficiently robust to alter the effects of fibrates on diet-induced obesity phenotypes.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Fenofibrato/farmacología , Obesidad/tratamiento farmacológico , PPAR alfa/genética , PPAR alfa/metabolismo , Subfamilia D de Transportadores de Casetes de Unión al ATP , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Dieta/métodos , Modelos Animales de Enfermedad , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/genética , Resistencia a la Insulina/genética , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
12.
Hum Mol Genet ; 21(5): 1062-77, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22095690

RESUMEN

X-linked adrenoleukodystrophy (X-ALD) is an inherited disorder characterized by axonopathy and demyelination in the central nervous system and adrenal insufficiency. Main X-ALD phenotypes are: (i) an adult adrenomyeloneuropathy (AMN) with axonopathy in spinal cords, (ii) cerebral AMN with brain demyelination (cAMN) and (iii) a childhood variant, cALD, characterized by severe cerebral demyelination. Loss of function of the ABCD1 peroxisomal fatty acid transporter and subsequent accumulation of very-long-chain fatty acids (VLCFAs) are the common culprits to all forms of X-ALD, an aberrant microglial activation accounts for the cerebral forms, whereas inflammation allegedly plays no role in AMN. How VLCFA accumulation leads to neurodegeneration and what factors account for the dissimilar clinical outcomes and prognosis of X-ALD variants remain elusive. To gain insights into these questions, we undertook a transcriptomic approach followed by a functional-enrichment analysis in spinal cords of the animal model of AMN, the Abcd1(-) null mice, and in normal-appearing white matter of cAMN and cALD patients. We report that the mouse model shares with cAMN and cALD a common signature comprising dysregulation of oxidative phosphorylation, adipocytokine and insulin signaling pathways, and protein synthesis. Functional validation by quantitative polymerase chain reaction, western blots and assays in spinal cord organotypic cultures confirmed the interplay of these pathways through IkB kinase, being VLCFA in excess a causal, upstream trigger promoting the altered signature. We conclude that X-ALD is, in all its variants, a metabolic/inflammatory syndrome, which may offer new targets in X-ALD therapeutics.


Asunto(s)
Adipoquinas/metabolismo , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Encéfalo/metabolismo , Ácidos Grasos/metabolismo , Redes y Vías Metabólicas , Fosforilación Oxidativa , Médula Espinal/metabolismo , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP , Transportadoras de Casetes de Unión a ATP/genética , Adiponectina/metabolismo , Adulto , Animales , Vías Biosintéticas , Niño , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Expresión Génica , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Humanos , Quinasa I-kappa B/metabolismo , Insulina/metabolismo , Resistencia a la Insulina , Leptina/metabolismo , Ratones , FN-kappa B/metabolismo , Estrés Oxidativo , Transducción de Señal , Receptores Toll-Like/metabolismo , Transcriptoma
13.
Brain ; 136(Pt 3): 891-904, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23436506

RESUMEN

Oxidative damage is a pivotal aetiopathogenic factor in X-linked adrenoleukodystrophy. This is a neurometabolic disease characterized by the accumulation of very-long-chain fatty acids owing to the loss of function of the peroxisomal transporter Abcd1. Here, we used the X-linked adrenoleukodystrophy mouse model and patient's fibroblasts to detect malfunctioning of the ubiquitin-proteasome system resulting from the accumulation of oxidatively modified proteins, some involved in bioenergetic metabolism. Furthermore, the immunoproteasome machinery appears upregulated in response to oxidative stress, in the absence of overt inflammation. i-Proteasomes are recruited to mitochondria when fibroblasts are exposed to an excess of very-long-chain fatty acids in response to oxidative stress. Antioxidant treatment regulates proteasome expression, prevents i-proteasome induction and translocation of i-proteasomes to mitochondria. Our findings support a key role of i-proteasomes in quality control in mitochondria during oxidative damage in X-linked adrenoleukodystrophy, and perhaps in other neurodegenerative conditions with similar pathogeneses.


Asunto(s)
Adrenoleucodistrofia/metabolismo , Estrés Oxidativo/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Adrenoleucodistrofia/inmunología , Adrenoleucodistrofia/fisiopatología , Animales , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejo de la Endopetidasa Proteasomal/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ubiquitina/inmunología
14.
Brain ; 136(Pt 8): 2432-43, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23794606

RESUMEN

X-linked adrenoleukodystrophy is a neurometabolic disorder caused by inactivation of the peroxisomal ABCD1 transporter of very long-chain fatty acids. In mice, ABCD1 loss causes late onset axonal degeneration in the spinal cord in association with locomotor disability resembling the most common phenotype in patients, adrenomyeloneuropathy. Increasing evidence indicates that oxidative stress and bioenergetic failure play major roles in the pathogenesis of X-linked adrenoleukodystrophy. In this study, we aimed to evaluate whether mitochondrial biogenesis is affected in X-linked adrenoleukodystrophy. We demonstrated that Abcd1 null mice show reduced mitochondrial DNA concomitant with downregulation of mitochondrial biogenesis pathway driven by PGC-1α/PPARγ and reduced expression of mitochondrial proteins cytochrome c, NDUFB8 and VDAC. Moreover, we show that the oral administration of pioglitazone, an agonist of PPARγ, restored mitochondrial content and expression of master regulators of biogenesis, neutralized oxidative damage to proteins and DNA, and reversed bioenergetic failure in terms of ATP levels, NAD+/NADH ratios, pyruvate kinase and glutathione reductase activities. Most importantly, the treatment halted locomotor disability and axonal damage in X-linked adrenoleukodystrophy mice. These results lend support to the use of pioglitazone in clinical trials with patients with adrenomyeloneuropathy and reveal novel molecular mechanisms of action of pioglitazone in neurodegeneration. Future studies should address the effects of this anti-diabetic drug on other axonopathies in which oxidative stress and mitochondrial dysfunction are contributing factors.


Asunto(s)
Adrenoleucodistrofia/tratamiento farmacológico , Axones/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Degeneración Nerviosa/tratamiento farmacológico , Tiazolidinedionas/uso terapéutico , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP , Transportadoras de Casetes de Unión a ATP/genética , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/patología , Animales , Axones/metabolismo , Axones/patología , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Glutatión Reductasa/metabolismo , Humanos , Hipoglucemiantes/farmacología , Ratones , Ratones Noqueados , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Pioglitazona , Tiazolidinedionas/farmacología , Resultado del Tratamiento
15.
Brain ; 135(Pt 12): 3584-98, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23250880

RESUMEN

A common process associated with oxidative stress and severe mitochondrial impairment is the opening of the mitochondrial permeability transition pore, as described in many neurodegenerative diseases. Thus, inhibition of mitochondrial permeability transition pore opening represents a potential target for inhibiting mitochondrial-driven cell death. Among the mitochondrial permeability transition pore components, cyclophilin D is the most studied and has been found increased under pathological conditions. Here, we have used in vitro and in vivo models of X-linked adrenoleukodystrophy to investigate the relationship between the mitochondrial permeability transition pore opening and redox homeostasis. X-linked adrenoleukodystrophy is a neurodegenerative condition caused by loss of function of the peroxisomal ABCD1 transporter, in which oxidative stress plays a pivotal role. In this study, we provide evidence of impaired mitochondrial metabolism in a peroxisomal disease, as fibroblasts in patients with X-linked adrenoleukodystrophy cannot survive when forced to rely on mitochondrial energy production, i.e. on incubation in galactose. Oxidative stress induced under galactose conditions leads to mitochondrial damage in the form of mitochondrial inner membrane potential dissipation, ATP drop and necrotic cell death, together with increased levels of oxidative modifications in cyclophilin D protein. Moreover, we show increased expression levels of cyclophilin D in the affected zones of brains in patients with adrenomyeloneuropathy, in spinal cord of a mouse model of X-linked adrenoleukodystrophy (Abcd1-null mice) and in fibroblasts from patients with X-linked adrenoleukodystrophy. Notably, treatment with antioxidants rescues mitochondrial damage markers in fibroblasts from patients with X-linked adrenoleukodystrophy, including cyclophilin D oxidative modifications, and reverses cyclophilin D induction in vitro and in vivo. These findings provide mechanistic insight into the beneficial effects of antioxidants in neurodegenerative and non-neurodegenerative cyclophilin D-dependent disorders.


Asunto(s)
Adrenoleucodistrofia/patología , Ciclofilinas/metabolismo , Fibroblastos/ultraestructura , Potencial de la Membrana Mitocondrial/fisiología , Estrés Oxidativo/fisiología , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/deficiencia , Acetilcisteína/administración & dosificación , Adenosina Trifosfato/metabolismo , Adrenoleucodistrofia/dietoterapia , Factores de Edad , Análisis de Varianza , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Butionina Sulfoximina/administración & dosificación , Muerte Celular , Cromatina/patología , Peptidil-Prolil Isomerasa F , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Citometría de Flujo , Galactosa/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Glutatión/metabolismo , Humanos , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Fármacos Neuroprotectores/administración & dosificación , Oligopéptidos/farmacología , Estrés Oxidativo/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ácido Tióctico/administración & dosificación , Factores de Tiempo , Tubulina (Proteína)/metabolismo , Vitamina E/administración & dosificación
16.
J Clin Invest ; 133(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36951944

RESUMEN

Sphingolipids function as membrane constituents and signaling molecules, with crucial roles in human diseases, from neurodevelopmental disorders to cancer, best exemplified in the inborn errors of sphingolipid metabolism in lysosomes. The dihydroceramide desaturase Δ4-dihydroceramide desaturase 1 (DEGS1) acts in the last step of a sector of the sphingolipid pathway, de novo ceramide biosynthesis. Defects in DEGS1 cause the recently described hypomyelinating leukodystrophy-18 (HLD18) (OMIM #618404). Here, we reveal that DEGS1 is a mitochondria-associated endoplasmic reticulum membrane-resident (MAM-resident) enzyme, refining previous reports locating DEGS1 at the endoplasmic reticulum only. Using patient fibroblasts, multiomics, and enzymatic assays, we show that DEGS1 deficiency disrupts the main core functions of the MAM: (a) mitochondrial dynamics, with a hyperfused mitochondrial network associated with decreased activation of dynamin-related protein 1; (b) cholesterol metabolism, with impaired sterol O-acyltransferase activity and decreased cholesteryl esters; (c) phospholipid metabolism, with increased phosphatidic acid and phosphatidylserine and decreased phosphatidylethanolamine; and (d) biogenesis of lipid droplets, with increased size and numbers. Moreover, we detected increased mitochondrial superoxide species production in fibroblasts and mitochondrial respiration impairment in patient muscle biopsy tissues. Our findings shed light on the pathophysiology of HLD18 and broaden our understanding of the role of sphingolipid metabolism in MAM function.


Asunto(s)
Oxidorreductasas , Esfingolípidos , Humanos , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Oxidorreductasas/metabolismo , Esfingolípidos/metabolismo
17.
EBioMedicine ; 96: 104781, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37683329

RESUMEN

BACKGROUND: X-linked adrenoleukodystrophy (X-ALD) is highly variable, ranging from slowly progressive adrenomyeloneuropathy to severe brain demyelination and inflammation (cerebral ALD, CALD) affecting males with childhood peak onset. Risk models integrating blood-based biomarkers to indicate CALD onset, enabling timely interventions, are lacking. Therefore, we evaluated the prognostic value of blood biomarkers in addition to current neuroimaging predictors for early detection of CALD. METHODS: We measured blood biomarkers in a retrospective, male CALD risk-assessment cohort consisting of 134 X-ALD patients and 66 controls and in a phenotype-blinded validation set (25 X-ALD boys, 4-13 years) using Simoa®and Luminex® technologies. FINDINGS: Among 25 biomarkers indicating axonal damage, astrocye/microglia activation, or immune-cell recruitment, neurofilament light chain (NfL) had the highest prognostic value for early indication of childhood/adolescent CALD. A plasma NfL cut-off level of 8.33 pg/mL, determined in the assessment cohort, correctly discriminated CALD with an accuracy of 96% [95% CI: 80-100] in the validation group. Multivariable logistic regression models revealed that combining NfL with GFAP or cytokines/chemokines (IL-15, IL-12p40, CXCL8, CCL11, CCL22, and IL-4) that were significantly elevated in CALD vs healthy controls had no additional benefit for detecting neuroinflammation. Some cytokines/chemokines were elevated only in childhood/adolescent CALD and already upregulated in asymptomatic X-ALD children (IL-15, IL-12p40, and CCL7). In adults, NfL levels distinguished CALD but were lower than in childhood/adolescent CALD patients with similar (MRI) lesion severity. Blood GFAP did not differentiate CALD from non-inflammatory X-ALD. INTERPRETATION: Biomarker-based risk prediction with a plasma NfL cut-off value of 8.33 pg/mL, determined by ROC analysis, indicates CALD onset with high sensitivity and specificity in childhood X-ALD patients. A specific pro-inflammatory cytokine/chemokine profile in asymptomatic X-ALD boys may indicate a primed, immanent inflammatory state aligning with peak onset of CALD. Age-related differences in biomarker levels in adult vs childhood CALD patients warrants caution in predicting onset and progression of CALD in adults. Further evaluations are needed to assess clinical utility of the NfL cut-off for risk prognosis of CALD onset. FUNDING: Austrian Science Fund, European Leukodystrophy Association.

18.
Genome Med ; 15(1): 68, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679823

RESUMEN

BACKGROUND: Whole-exome sequencing (WES) and whole-genome sequencing (WGS) have become indispensable tools to solve rare Mendelian genetic conditions. Nevertheless, there is still an urgent need for sensitive, fast algorithms to maximise WES/WGS diagnostic yield in rare disease patients. Most tools devoted to this aim take advantage of patient phenotype information for prioritization of genomic data, although are often limited by incomplete gene-phenotype knowledge stored in biomedical databases and a lack of proper benchmarking on real-world patient cohorts. METHODS: We developed ClinPrior, a novel method for the analysis of WES/WGS data that ranks candidate causal variants based on the patient's standardized phenotypic features (in Human Phenotype Ontology (HPO) terms). The algorithm propagates the data through an interactome network-based prioritization approach. This algorithm was thoroughly benchmarked using a synthetic patient cohort and was subsequently tested on a heterogeneous prospective, real-world series of 135 families affected by hereditary spastic paraplegia (HSP) and/or cerebellar ataxia (CA). RESULTS: ClinPrior successfully identified causative variants achieving a final positive diagnostic yield of 70% in our real-world cohort. This includes 10 novel candidate genes not previously associated with disease, 7 of which were functionally validated within this project. We used the knowledge generated by ClinPrior to create a specific interactome for HSP/CA disorders thus enabling future diagnoses as well as the discovery of novel disease genes. CONCLUSIONS: ClinPrior is an algorithm that uses standardized phenotype information and interactome data to improve clinical genomic diagnosis. It helps in identifying atypical cases and efficiently predicts novel disease-causing genes. This leads to increasing diagnostic yield, shortening of the diagnostic Odysseys and advancing our understanding of human illnesses.


Asunto(s)
Algoritmos , Genómica , Humanos , Estudios Prospectivos , Bases de Datos Factuales , Estudios de Asociación Genética
19.
Hum Mol Genet ; 19(10): 2005-14, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20179078

RESUMEN

X-linked adrenoleukodystrophy (X-ALD) is a fatal, axonal demyelinating, neurometabolic disease. It results from the functional loss of a member of the peroxisomal ATP-binding cassette transporter subfamily D (ABCD1), which is involved in the metabolism of very long-chain fatty acids (VLCFA). Oxidative damage of proteins caused by excess of the hexacosanoic acid, the most prevalent VLCFA accumulating in X-ALD, is an early event in the neurodegenerative cascade. We demonstrate here that valproic acid (VPA), a widely used anti-epileptic drug with histone deacetylase inhibitor properties, induced the expression of the functionally overlapping ABCD2 peroxisomal transporter. VPA corrected the oxidative damage and decreased the levels of monounsaturated VLCFA (C26:1 n-9), but not saturated VLCFA. Overexpression of ABCD2 alone prevented oxidative lesions to proteins in a mouse model of X-ALD. A 6-month pilot trial of VPA in X-ALD patients resulted in reversion of the oxidative damage of proteins in peripheral blood mononuclear cells. Thus, we propose VPA as a promising novel therapeutic approach that warrants further clinical investigation in X-ALD.


Asunto(s)
Adrenoleucodistrofia/tratamiento farmacológico , Antioxidantes/uso terapéutico , Ácido Valproico/uso terapéutico , Subfamilia D de Transportadores de Casetes de Unión al ATP , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Adolescente , Adrenoleucodistrofia/enzimología , Adrenoleucodistrofia/patología , Animales , Antioxidantes/farmacología , Biomarcadores/metabolismo , Niño , Elongasas de Ácidos Grasos , Ácidos Grasos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Ácido Valproico/farmacología
20.
Ann Neurol ; 70(1): 84-92, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21786300

RESUMEN

OBJECTIVE: Axonal degeneration is a main contributor to disability in progressive neurodegenerative diseases in which oxidative stress is often identified as a pathogenic factor. We aim to demonstrate that antioxidants are able to improve axonal degeneration and locomotor deficits in a mouse model of X-adrenoleukodystrophy (X-ALD). METHODS: X-ALD is a lethal disease caused by loss of function of the ABCD1 peroxisomal transporter of very long chain fatty acids (VLCFA). The mouse model for X-ALD exhibits a late onset neurological phenotype with locomotor disability and axonal degeneration in spinal cord resembling the most common phenotype of the disease, adrenomyeloneuropathy (X-AMN). Recently, we identified oxidative damage as an early event in life, and the excess of VLCFA as a generator of radical oxygen species (ROS) and oxidative damage to proteins in X-ALD. RESULTS: Here, we prove the capability of the antioxidants N-acetyl-cysteine, α-lipoic acid, and α-tocopherol to scavenge VLCFA-dependent ROS generation in vitro. Furthermore, in a preclinical setting, the cocktail of the 3 compounds reversed: (1) oxidative stress and lesions to proteins, (2) immunohistological signs of axonal degeneration, and (3) locomotor impairment in bar cross and treadmill tests. INTERPRETATION: We have established a direct link between oxidative stress and axonal damage in a mouse model of neurodegenerative disease. This conceptual proof of oxidative stress as a major disease-driving factor in X-AMN warrants translation into clinical trials for X-AMN, and invites assessment of antioxidant strategies in axonopathies in which oxidative damage might be a contributing factor.


Asunto(s)
Adrenoleucodistrofia/metabolismo , Antioxidantes/uso terapéutico , Axones/metabolismo , Modelos Animales de Enfermedad , Degeneración Nerviosa/metabolismo , Adrenoleucodistrofia/tratamiento farmacológico , Adrenoleucodistrofia/patología , Animales , Antioxidantes/farmacología , Axones/efectos de los fármacos , Axones/patología , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA