Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 22(6): 731-736, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37069292

RESUMEN

Moiré superlattices formed from transition metal dichalcogenides support a variety of quantum electronic phases that are highly tunable using applied electromagnetic fields. While the valley degree of freedom affects optoelectronic properties in the constituent transition metal dichalcogenides, it has yet to be fully explored in moiré systems. Here we establish twisted double-bilayer WSe2 as an experimental platform to study electronic correlations within Γ-valley moiré bands. Through local and global electronic compressibility measurements, we identify charge-ordered phases at multiple integer and fractional moiré fillings. By measuring the magnetic field dependence of their energy gaps and the chemical potential upon doping, we reveal spin-polarized ground states with spin-polaron quasiparticle excitations. In addition, an applied displacement field induces a metal-insulator transition driven by tuning between Γ- and K-valley moiré bands. Our results demonstrate control over the spin and valley character of the correlated ground and excited states in this system.

2.
Nano Lett ; 22(14): 5689-5697, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35839312

RESUMEN

Ca2RuO4 is a transition-metal oxide that exhibits a Mott insulator-metal transition (IMT) concurrent with a symmetry-preserving Jahn-Teller distortion (JT) at 350 K. The coincidence of these two transitions demonstrates a high level of coupling between the electronic and structural degrees of freedom in Ca2RuO4. Using spectroscopic measurements with nanoscale spatial resolution, we interrogate the interplay of the JT and IMT through the temperature-driven transition. Then, we introduce photoexcitation with subpicosecond temporal resolution to explore the coupling of the JT and IMT via electron-hole injection under ambient conditions. Through the temperature-driven IMT, we observe phase coexistence in the form of a stripe phase existing at the domain wall between macroscopic insulating and metallic domains. Through ultrafast carrier injection, we observe the formation of midgap states via enhanced optical absorption. We propose that these midgap states become trapped by lattice polarons originating from the local perturbation of the JT.

3.
Science ; 384(6693): 343-347, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38669569

RESUMEN

Semiconductor moiré superlattices have been shown to host a wide array of interaction-driven ground states. However, twisted homobilayers have been difficult to study in the limit of large moiré wavelengths, where interactions are most dominant. In this study, we conducted local electronic compressibility measurements of twisted bilayer WSe2 (tWSe2) at small twist angles. We demonstrated multiple topological bands that host a series of Chern insulators at zero magnetic field near a "magic angle" around 1.23°. Using a locally applied electric field, we induced a topological quantum-phase transition at one hole per moiré unit cell. Our work establishes the topological phase diagram of a generalized Kane-Mele-Hubbard model in tWSe2, demonstrating a tunable platform for strongly correlated topological phases.

4.
Nat Commun ; 14(1): 6679, 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865663

RESUMEN

The flat electronic bands in magic-angle twisted bilayer graphene (MATBG) host a variety of correlated insulating ground states, many of which are predicted to support charged excitations with topologically non-trivial spin and/or valley skyrmion textures. However, it has remained challenging to experimentally address their ground state order and excitations, both because some of the proposed states do not couple directly to experimental probes, and because they are highly sensitive to spatial inhomogeneities in real samples. Here, using a scanning single-electron transistor, we observe thermodynamic gaps at even integer moiré filling factors at low magnetic fields. We find evidence of a field-tuned crossover from charged spin skyrmions to bare particle-like excitations, suggesting that the underlying ground state belongs to the manifold of strong-coupling insulators. From the spatial dependence of these states and the chemical potential variation within the flat bands, we infer a link between the stability of the correlated ground states and local twist angle and strain. Our work advances the microscopic understanding of the correlated insulators in MATBG and their unconventional excitations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA