Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 18(2): 700-3, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26659556

RESUMEN

In this work, we investigated SiO(x)-based interfacial resistive switching in planar metal-insulator-metal structures using physical/chemical/electrical analyses. This work helps clarify the interfacial reaction process and mechanism in SiO(x), and also shows the potential for high temperature operation in future nonvolatile memory applications.

2.
Nano Lett ; 14(2): 813-8, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24369783

RESUMEN

We report on a highly compact, one diode-one resistor (1D-1R) nanopillar device architecture for SiOx-based ReRAM fabricated using nanosphere lithography (NSL). The intrinsic SiOx-based resistive switching element and Si diode are self-aligned on an epitaxial silicon wafer using NSL and a deep-Si-etch process without conventional photolithography. AC-pulse response in 50 ns regime, multibit operation, and good reliability are demonstrated. The NSL process provides a fast and economical approach to large-scale patterning of high-density 1D-1R ReRAM with good potential for use in future applications.

3.
Sci Rep ; 9(1): 12420, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455881

RESUMEN

Resistive random access memory (RRAM) is a leading candidate in the race towards emerging nonvolatile memory technologies. The sneak path current (SPC) problem is one of the main difficulties in crossbar memory configurations. RRAM devices with desirable properties such as a selectorless, 1R-only architecture with self-rectifying behavior are potential SPC solutions. In this work, the intrinsic nonlinear (NL) characteristics and relaxation characteristics of bilayer high-k/low-k stacked RRAMs are presented. The intrinsic nonlinearity reliability of bilayer selectorless 1R-only RRAM without additional switches has been studied for their ability to effectively suppress SPC in RRAM arrays. The relaxation properties with resistive switching identification method by utilizing the activation energy (Ea) extraction methodology is demonstrated, which provides insights and design guidance for non-uniform bilayer selectorless 1R-only RRAM array applications.

4.
Nanoscale ; 10(33): 15608-15614, 2018 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30090909

RESUMEN

Selectorless graphite-based resistive random-access memory (RRAM) has been demonstrated by utilizing the intrinsic nonlinear resistive switching (RS) characteristics, without an additional selector or transistor for low-power RRAM array application. The low effective dielectric constant value (k) layer of graphite or graphite oxide is utilized, which is beneficial in suppressing sneak-path currents in the crossbar RRAM array. The tail-bits with low nonlinearity can be manipulated by the positive voltage pulse, which in turn can alleviate variability and reliability issues. Our results provide additional insights for built-in nonlinearity in 1R-only selectorless RRAMs, which are applicable to the low-power memory array, ultrahigh density storage, and in-memory neuromorphic computational configurations.

5.
Sci Rep ; 6: 21268, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26880381

RESUMEN

We realize a device with biological synaptic behaviors by integrating silicon oxide (SiO(x)) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiO(x)-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA