Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(48): 8259-8270, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37821229

RESUMEN

The recent increase in the use of nicotine products by teenagers has revealed an urgent need to better understand the impact of nicotine on the adolescent brain. Here, we sought to examine the actions of extracellular ATP as a neurotransmitter and to investigate whether ATP and nicotinic signaling interact during adolescence. With the GRABATP (G-protein-coupled receptor activation-based ATP sensor), we first demonstrated that nicotine induces extracellular ATP release in the medial habenula, a brain region involved in nicotine aversion and withdrawal. Using patch-clamp electrophysiology, we then demonstrated that activation of the ATP receptors P2X or P2Y1 increases the neuronal firing of cholinergic neurons. Surprisingly, contrasting interactive effects were observed with nicotine exposure. For the P2X receptor, activation had no observable effect on acute nicotine-mediated activity, but during abstinence after 10 d of nicotine exposure, coexposure to nicotine and the P2X agonist potentiated neuronal activity in female, but not male, neurons. For P2Y1 signaling, a potentiated effect of the agonist and nicotine was observed with acute exposure, but not following extended nicotine exposure. These data reveal a complex interactive effect between nicotinic and ATP signaling in the adolescent brain and provide mechanistic insights into extracellular ATP signaling with sex-specific alterations of neuronal responses based on prior drug exposure.SIGNIFICANCE STATEMENT In these studies, it was discovered that nicotine induces extracellular ATP release in the medial habenula and subsequent activation of the ATP purinergic receptors increases habenular cholinergic neuronal firing in the adolescent brain. Interestingly, following extended nicotine exposure, nicotine was found to alter the interplay between purinergic and nicotinic signaling in a sex-specific manner. Together, these studies provide a novel understanding for the role of extracellular ATP in mediating habenular activity and reveal how nicotine exposure during adolescence alters these signaling mechanisms, which has important implications given the high incidence of e-cigarette/vape use by youth.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Habénula , Receptores Purinérgicos P2 , Masculino , Adolescente , Femenino , Humanos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Transmisión Sináptica , Neuronas Colinérgicas , Receptores Purinérgicos P2/fisiología , Adenosina Trifosfato/farmacología
2.
Pharmacol Res ; 187: 106600, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36481259

RESUMEN

Passive aerosol exposure to Δ9-tetrahydrocannabinol (THC) in laboratory animals results in faster onset of action and less extensive liver metabolism compared to most other administration routes and might thus provide an ecologically relevant model of human cannabis inhalation. Previous studies have, however, overlooked the possibility that rodents, as obligate nose breathers, may accumulate aerosolized THC in the nasal cavity, from where the drug might directly diffuse to the brain. To test this, we administered THC (ten 5-s puffs of 100 mg/mL of THC) to adolescent (31-day-old) Sprague-Dawley rats of both sexes. We used liquid chromatography/tandem mass spectrometry to quantify the drug and its first-pass metabolites - 11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC) - in nasal mucosa, lungs, plasma, and brain (olfactory bulb and cerebellum) at various time points after exposure. Apparent maximal THC concentration and area under the curve were ∼5 times higher in nasal mucosa than in lungs and 50-80 times higher than in plasma. Concentrations of 11-OH-THC were also greater in nasal mucosa and lungs than other tissues, whereas 11-COOH-THC was consistently undetectable. Experiments with microsomal preparations confirmed local metabolism of THC into 11-OH-THC (not 11-COOH-THC) in nasal mucosa and lungs. Finally, whole-body exposure to THC deposited substantial amounts of THC (∼150 mg/g) on fur but suppressed post-exposure grooming in rats of both sexes. The results indicate that THC absorption and metabolism in nasal mucosa and lungs, but probably not gastrointestinal tract, contribute to the pharmacological effects of aerosolized THC in male and female rats.


Asunto(s)
Cannabis , Dronabinol , Adolescente , Humanos , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Espectrometría de Masas , Aerosoles/metabolismo
3.
J Neurosci ; 41(8): 1779-1787, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33380469

RESUMEN

Allelic variation in CHRNA3, the gene encoding the α3 nicotinic acetylcholine receptor (nAChR) subunit, increases vulnerability to tobacco dependence and smoking-related diseases, but little is known about the role for α3-containing (α3*) nAChRs in regulating the addiction-related behavioral or physiological actions of nicotine. α3* nAChRs are densely expressed by medial habenula (mHb) neurons, which project almost exclusively to the interpeduncular nucleus (IPn) and are known to regulate nicotine avoidance behaviors. We found that Chrna3tm1.1Hwrt hypomorphic mice, which express constitutively low levels of α3* nAChRs, self-administer greater quantities of nicotine (0.4 mg kg-1 per infusion) than their wild-type littermates. Microinfusion of a lentivirus vector to express a short-hairpin RNA into the mHb or IPn to knock-down Chrna3 transcripts markedly increased nicotine self-administration behavior in rats (0.01-0.18 mg kg-1 per infusion). Using whole-cell recordings, we found that the α3ß4* nAChR-selective antagonist α-conotoxin AuIB almost completely abolished nicotine-evoked currents in mHb neurons. By contrast, the α3ß2* nAChR-selective antagonist α-conotoxin MII only partially attenuated these currents. Finally, micro-infusion of α-conotoxin AuIB (10 µm) but not α-conotoxin MII (10 µm) into the IPn in rats increased nicotine self-administration behavior. Together, these data suggest that α3ß4* nAChRs regulate the stimulatory effects of nicotine on the mHb-IPn circuit and thereby regulate nicotine avoidance behaviors. These findings provide mechanistic insights into how CHRNA3 risk alleles can increase the risk of tobacco dependence and smoking-related diseases in human smokers.SIGNIFICANCE STATEMENT Allelic variation in CHRNA3, which encodes the α3 nicotinic acetylcholine receptor (nAChR) subunit gene, increases risk of tobacco dependence but underlying mechanisms are unclear. We report that Chrna3 hypomorphic mice consume greater quantities of nicotine than wild-type mice and that knock-down of Chrna3 gene transcripts in the habenula or interpeduncular nucleus (IPn) increases nicotine intake in rats. α-Conotoxin AuIB, a potent antagonist of the α3ß4 nAChR subtype, reduced the stimulatory effects of nicotine on habenular neurons, and its infusion into the IPn increased nicotine intake in rats. These data suggest that α3ß4 nAChRs in the habenula-IPn circuit regulate the motivational properties of nicotine.


Asunto(s)
Habénula/metabolismo , Núcleo Interpeduncular/metabolismo , Receptores Nicotínicos/metabolismo , Tabaquismo/metabolismo , Animales , Femenino , Predisposición Genética a la Enfermedad/genética , Variación Genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratas , Ratas Wistar , Receptores Nicotínicos/genética , Tabaquismo/genética
4.
Nicotine Tob Res ; 24(8): 1150-1160, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35090174

RESUMEN

INTRODUCTION: Although there has been a decrease in the prevalence of tobacco smoking, exposure to nicotine during pregnancy remains a substantial problem worldwide. Further, given the recent escalation in e-cigarette use and legalization of cannabis, it has become essential to understand the effects of nicotine and cannabinoid co-exposure during early developmental stages. AIMS AND METHODS: We systematically examined the effects of nicotine and/or THC prenatal exposure on cognitive behaviors in male and female offspring. Dams were exposed to nicotine vape or vehicle, and oral edible THC or vehicle, throughout pregnancy. Adolescent offspring were then tested in the prepulse inhibition test, novel object recognition task, and novelty suppressed feeding task. RESULTS: At birth, pups from mothers exposed to nicotine vape or oral THC exhibited reduced body weight, compared to control pups. Prenatal nicotine vape exposure resulted in a decreased baseline startle reactivity in adolescent male and female rats, and in females, enhanced sensorimotor gating in the prepulse inhibition test. Prenatal nicotine and THC co-exposure resulted in significant deficits in the prepulse inhibition test in males. Deficits in short-term memory were also found in males prenatally exposed to THC, either alone or with nicotine co-exposure, and in females exposed to THC alone. Finally, in males, a modest increase in anxiety-associated behaviors was found with THC or nicotine exposure in the latency to approach a novel palatable food. CONCLUSIONS: These studies demonstrate differential effects of prenatal exposure to e-cigarette nicotine vape and/or edible THC on cognitive function, with differing effects within male and female groups. IMPLICATIONS: These studies demonstrate an impact of nicotine, THC, or co-exposure during early developmental stages in utero on behavioral outcomes in adolescence. These findings have important translational implications given the continued use of nicotine and THC containing products by pregnant women worldwide, which can be applied to support healthcare and policy efforts restricting nicotine and THC use during pregnancy.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Efectos Tardíos de la Exposición Prenatal , Animales , Cognición , Dronabinol/farmacología , Femenino , Humanos , Masculino , Nicotina/efectos adversos , Embarazo , Ratas
5.
Addict Biol ; 26(6): e13024, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33624410

RESUMEN

E-cigarettes, which deliver vaporized nicotine, have dramatically risen in popularity in recent years, despite many unanswered questions about safety, efficacy in reducing dependence, and overall impact on public health. Other factors, such as sex, also play an important role in determining behavioral and neurochemical responses to drugs of abuse. In these studies, we sought to develop a protocol for vaporized e-cigarette nicotine self-administration in rats, as a foundation to better understand the differing effects of nicotine exposure routes on behavior and physiological function. We report a novel method that elicits robust nicotine vapor self-administration in male and female rats. Our findings indicate that 5-mg/ml nicotine vape solution provides a high level of consistency in lever-pressing behavior for both males and females. Moreover, in male rats, we find that such e-cigarette nicotine vapor induces similar blood levels of nicotine's main metabolite, cotinine, as that found with intravenous nicotine self-administration. Therefore, the breathing pattern during vapor exposure in males leads to similar levels of titrated nicotine intake as with intravenous nicotine self-administration. Interestingly, a differential effect was found in the females, in which the same conditions of vapor exposure led to decreased cotinine levels with vapor compared to intravenous self-administration. Finally, differences in nicotine-mediated locomotion provide further support of the physiological effects of e-cigarette vapor inhalation. Taken together, our findings reveal important sex differences in nicotine intake based on the route of exposure, and we further establish a protocol for nicotine vapor self-administration in rats.


Asunto(s)
Cigarrillo Electrónico a Vapor/farmacología , Nicotina/farmacología , Animales , Cotinina/sangre , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Sistemas Electrónicos de Liberación de Nicotina , Femenino , Locomoción/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Autoadministración , Factores Sexuales
6.
Addict Biol ; 26(1): e12859, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31782218

RESUMEN

Nicotine use remains highly prevalent with tobacco and e-cigarette products consumed worldwide. However, increasing evidence of transgenerational epigenetic inheritance suggests that nicotine use may alter behavior and neurobiology in subsequent generations. We tested the effects of chronic paternal nicotine exposure in C57BL6/J mice on fear conditioning in F1 and F2 offspring, as well as conditioned fear extinction and spontaneous recovery, nicotine self-administration, hippocampal cholinergic functioning, RNA expression, and DNA methylation in F1 offspring. Paternal nicotine exposure was associated with enhanced contextual and cued fear conditioning and spontaneous recovery of extinguished fear memories. Further, nicotine reinforcement was reduced in nicotine-sired mice, as assessed in a self-administration paradigm. These behavioral phenotypes were coupled with altered response to nicotine, upregulated hippocampal nicotinic acetylcholine receptor binding, reduced evoked hippocampal cholinergic currents, and altered methylation and expression of hippocampal genes related to neural development and plasticity. Gene expression analysis suggests multigenerational effects on broader gene networks potentially involved in neuroplasticity and mental disorders. The changes in fear conditioning similarly suggest phenotypes analogous to anxiety disorders similar to post-traumatic stress.


Asunto(s)
Miedo/efectos de los fármacos , Hipocampo/metabolismo , Memoria/efectos de los fármacos , Nicotina/farmacología , Exposición Paterna/efectos adversos , Animales , Condicionamiento Psicológico/efectos de los fármacos , Señales (Psicología) , Extinción Psicológica , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Regulación hacia Arriba/efectos de los fármacos
7.
J Neurosci ; 39(47): 9262-9268, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748281

RESUMEN

Intercellular communication has recently been shown to occur via transfer of cargo loaded within extracellular vesicles (EVs). Present within all biofluids of the body, EVs can contain various signaling factors, including coding and noncoding RNAs (e.g., mRNA, miRNA, lncRNA, snRNA, tRNA, yRNA), DNA, proteins, and enzymes. Multiple types of cells appear to be capable of releasing EVs, including cancer, stem, epithelial, immune, glial, and neuronal cells. However, the functional impact of these circulating signals among neural networks within the brain has been difficult to establish given the complexity of cellular populations involved in release and uptake, as well as inherent limitations of examining a biofluid. In this brief commentary, we provide an analysis of the conceptual and technical considerations that limit our current understanding of signaling mediated by circulating EVs relative to their impact on neural function.


Asunto(s)
Encéfalo/metabolismo , Comunicación Celular/fisiología , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Neuronas/metabolismo , Animales , Transporte Biológico/fisiología , Exosomas/genética , Exosomas/metabolismo , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/fisiología
8.
J Pharmacol Exp Ther ; 372(1): 21-29, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31628204

RESUMEN

During tobacco and e-cigarette use, nicotine is mainly metabolized in the human liver by cytochrome P450 2A6 (CYP2A6). Given that a slower CYP2A6 metabolism has been associated with less vulnerability to develop nicotine dependence, the current studies sought to validate a novel CYP2A6 inhibitor, (5-(4-ethylpyridin-3-yl)thiophen-2-yl)methanamine (DLCI-1), for its effects on intravenous nicotine self-administration. Male and female mice were trained to self-administer nicotine across daily sessions. Once stable responding was achieved, DLCI-1 or vehicle control was administered prior to nicotine sessions. We found that the lower 25 mg/kg and moderate 50 mg/kg doses of DLCI-1 induced a significant decrease in nicotine intake for both males and females. DLCI-1 was further shown to be more effective than a moderate 1 mg/kg dose of bupropion on reducing nicotine intake and did not exert the adverse behavioral effects found with a high 75 mg/kg dose of bupropion. Although mice treated with DLCI-1 self-administered significantly less nicotine, similar nicotine-mediated behavioral effects on locomotion were observed. Together, along with the analysis of nicotine metabolites during self-administration, these findings support the contention that blocking hepatic nicotine metabolism would allow for similar activation of nicotinic acetylcholine receptors at lower nicotine doses. Moreover, these effects of DLCI-1 were specific to nicotine self-administration, as DLCI-1 did not result in any behavioral changes during food self-administration. Taken together, these studies validate DLCI-1 as a novel compound to decrease nicotine consumption, which may thereby promote tobacco and nicotine product cessation. SIGNIFICANCE STATEMENT: Current pharmacological approaches for nicotine and tobacco cessation have only been able to achieve limited efficaciousness in promoting long-term abstinence. In this work, we characterize the effects of a novel compound, (5-(4-ethylpyridin-3-yl)thiophen-2-yl)methanamine (DLCI-1), which inhibits the main enzyme that metabolizes nicotine, and we report a significant decrease in intravenous nicotine self-administration in male and female mice, supporting the potential of DLCI-1 as a novel tobacco cessation pharmacotherapeutic.


Asunto(s)
Citocromo P-450 CYP2A6/antagonistas & inhibidores , Inhibidores Enzimáticos/uso terapéutico , Agentes para el Cese del Hábito de Fumar/uso terapéutico , Tiofenos/uso terapéutico , Tabaquismo/tratamiento farmacológico , Animales , Citocromo P-450 CYP2A6/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/farmacología , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nicotina/metabolismo , Agentes para el Cese del Hábito de Fumar/administración & dosificación , Agentes para el Cese del Hábito de Fumar/efectos adversos , Agentes para el Cese del Hábito de Fumar/farmacología , Tiofenos/administración & dosificación , Tiofenos/efectos adversos , Tiofenos/farmacología
9.
Nicotine Tob Res ; 22(8): 1364-1373, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32396625

RESUMEN

INTRODUCTION: During adolescence, exposure to nicotine or cannabis independently induces effects on neuromaturation and later cognitive function. However, the potential effect of both drugs under co-use conditions has become of increasing concern given the prevalence of e-cigarettes, legalization of cannabis, and availability of synthetic "spice" cannabinoid agonists. AIMS AND METHODS: The current studies investigated the effects of exposure to a cannabinoid receptor agonist (WIN55,212-2) and/or nicotine over a discrete time period in mid-adolescence on later intravenous nicotine self-administration in adult male and female mice. We further examined whether cannabinoid agonist administration in adulthood would alter nicotine reinforcement, with either acute or chronic pairing across 7 days. RESULTS: We found that adult males exhibited increased nicotine self-administration at a lower, rewarding nicotine dose following adolescent cannabinoid exposure, either alone or with nicotine coadministration. In contrast, adult females demonstrated an opposing effect in which adolescent cannabinoid and nicotine coexposure resulted in decreased nicotine intake compared with the nicotine only and control groups. Furthermore, after maintaining nicotine self-administration across sessions, pretreatment with a low dose of the cannabinoid agonist decreased nicotine intake in both male and female control mice, and this lowering effect was evidenced after both acute and chronic treatment. However, the cannabinoid agonist was ineffective in altering nicotine intake in mice previously exposed to nicotine, cannabinoid agonist, or both during adolescence. CONCLUSIONS: These data provide evidence that adolescent drug exposure can alter later nicotine reinforcement in a sex-specific manner and can further modulate the effectiveness of interventions in reducing nicotine intake during adulthood. IMPLICATIONS: These studies demonstrate a significant impact of nicotine, cannabinoids, or coexposure on developmental processes during adolescence. Differential effects were observed within each sex, with opposing results found for cannabinoid exposure on nicotine intake in males and females. Intriguingly, we also evidenced resistance to the lowering effects of a cannabinoid agonist on nicotine intake in adulthood based on adolescent drug exposure. Thus, these findings have important implications for our understanding of the impact of nicotine and cannabinoids (eg, Δ9-tetrahydrocannabinol (THC) and synthetic "spice" cannabinoids) during development, with further implications for the effectiveness of therapeutic interventions based on prior drug exposure in youth.


Asunto(s)
Cannabinoides/administración & dosificación , Sistemas Electrónicos de Liberación de Nicotina/estadística & datos numéricos , Nicotina/administración & dosificación , Refuerzo en Psicología , Recompensa , Autoadministración/métodos , Adolescente , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
10.
Handb Exp Pharmacol ; 258: 373-393, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31267166

RESUMEN

Tobacco dependence is a leading cause of preventable disease and death worldwide. Nicotine, the main psychoactive component in tobacco cigarettes, has also been garnering increased popularity in its vaporized form, as derived from e-cigarette devices. Thus, an understanding of the molecular mechanisms underlying nicotine pharmacology and dependence is required to ascertain novel approaches to treat drug dependence. In this chapter, we review the field's current understanding of nicotine's actions in the brain, the neurocircuitry underlying drug dependence, factors that modulate the function of nicotinic acetylcholine receptors, and the role of specific genes in mitigating the vulnerability to develop nicotine dependence. In addition to nicotine's direct actions in the brain, other constituents in nicotine and tobacco products have also been found to alter drug use, and thus, evidence is provided to highlight this issue. Finally, currently available pharmacotherapeutic strategies are discussed, along with an outlook for future therapeutic directions to achieve to the goal of long-term nicotine cessation.


Asunto(s)
Nicotina/farmacología , Receptores Nicotínicos/fisiología , Tabaquismo/fisiopatología , Encéfalo/efectos de los fármacos , Humanos
11.
J Neurosci ; 38(9): 2177-2188, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29371319

RESUMEN

The recent development of transgenic rodent lines expressing cre recombinase in a cell-specific manner, along with advances in engineered viral vectors, has permitted in-depth investigations into circuit function. However, emerging evidence has begun to suggest that genetic modifications may introduce unexpected caveats. In the current studies, we sought to extensively characterize male and female mice from both the ChAT(BAC)-Cre mouse line, created with the bacterial artificial chromosome (BAC) method, and ChAT(IRES)-Cre mouse line, generated with the internal ribosome entry site (IRES) method. ChAT(BAC)-Cre transgenic and wild-type mice did not differ in general locomotor behavior, anxiety measures, drug-induced cataplexy, nicotine-mediated hypolocomotion, or operant food training. However, ChAT(BAC)-Cre transgenic mice did exhibit significant deficits in intravenous nicotine self-administration, which paralleled an increase in vesicular acetylcholine transporter and choline acetyltransferase (ChAT) hippocampal expression. For the ChAT(IRES)-Cre line, transgenic mice exhibited deficits in baseline locomotor, nicotine-mediated hypolocomotion, and operant food training compared with wild-type and hemizygous littermates. No differences among ChAT(IRES)-Cre wild-type, hemizygous, and transgenic littermates were found in anxiety measures, drug-induced cataplexy, and nicotine self-administration. Given that increased cre expression was present in the ChAT(IRES)-Cre transgenic mice, as well as a decrease in ChAT expression in the hippocampus, altered neuronal function may underlie behavioral phenotypes. In contrast, ChAT(IRES)-Cre hemizygous mice were more similar to wild-type mice in both protein expression and the majority of behavioral assessments. As such, interpretation of data derived from ChAT-Cre rodents must consider potential limitations dependent on the line and/or genotype used in research investigations.SIGNIFICANCE STATEMENT Altered baseline and/or nicotine-mediated behavioral profiles were discovered in transgenic mice from the ChAT(BAC)-Cre and ChAT(IRES)-Cre lines. Given that these cre-expressing mice have become increasingly used by the scientific community, either independently with chemicogenetic and optogenetic viral vectors or crossed with other transgenic lines, the current studies highlight important considerations for the interpretation of data from previous and future experimental investigations. Moreover, the current findings detail the behavioral effects of either increased or decreased baseline cholinergic signaling mechanisms on locomotor, anxiety, learning/memory, and intravenous nicotine self-administration behaviors.


Asunto(s)
Conducta Animal/fisiología , Colina O-Acetiltransferasa , Técnicas Genéticas , Integrasas , Modelos Animales , Animales , Conducta Animal/efectos de los fármacos , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Cromosomas Artificiales Bacterianos , Femenino , Hipocampo/metabolismo , Integrasas/metabolismo , Sitios Internos de Entrada al Ribosoma , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones Transgénicos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
12.
Nicotine Tob Res ; 20(7): 789-799, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29065200

RESUMEN

Introduction: Scientific discoveries over the past few decades have provided significant insight into the abuse liability and negative health consequences associated with tobacco and nicotine-containing products. While many of these advances have led to the development of policies and laws that regulate access to and formulations of these products, further research is critical to guide future regulatory efforts, especially as novel nicotine-containing products are introduced and selectively marketed to vulnerable populations. Discussion: In this narrative review, we provide an overview of the scientific findings that have impacted regulatory policy and discuss considerations for further translation of science into policy decisions. We propose that open, bidirectional communication between scientists and policy makers is essential to develop transformative preventive- and intervention-focused policies and programs to reduce appeal, abuse liability, and toxicity of the products. Conclusions: Through these types of interactions, collaborative efforts to inform and modify policy have the potential to significantly decrease the use of tobacco and alternative nicotine products and thus enhance health outcomes for individuals. Implications: This work addresses current topics in the nicotine and tobacco research field to emphasize the importance of basic science research and provide examples of how it can be utilized to inform public policy. In addition to relaying current thoughts on the topic from experts in the field, the article encourages continued efforts and communication between basic scientists and policy officials.


Asunto(s)
Investigación Biomédica/legislación & jurisprudencia , Nicotina , Política Pública/legislación & jurisprudencia , Productos de Tabaco/legislación & jurisprudencia , Investigación Biomédica/métodos , Humanos , Nicotina/normas , Productos de Tabaco/normas , Tabaquismo/prevención & control
13.
Nature ; 471(7340): 597-601, 2011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-21278726

RESUMEN

Genetic variation in CHRNA5, the gene encoding the α5 nicotinic acetylcholine receptor subunit, increases vulnerability to tobacco addiction and lung cancer, but the underlying mechanisms are unknown. Here we report markedly increased nicotine intake in mice with a null mutation in Chrna5. This effect was 'rescued' in knockout mice by re-expressing α5 subunits in the medial habenula (MHb), and recapitulated in rats through α5 subunit knockdown in MHb. Remarkably, α5 subunit knockdown in MHb did not alter the rewarding effects of nicotine but abolished the inhibitory effects of higher nicotine doses on brain reward systems. The MHb extends projections almost exclusively to the interpeduncular nucleus (IPN). We found diminished IPN activation in response to nicotine in α5 knockout mice. Further, disruption of IPN signalling increased nicotine intake in rats. Our findings indicate that nicotine activates the habenulo-interpeduncular pathway through α5-containing nAChRs, triggering an inhibitory motivational signal that acts to limit nicotine intake.


Asunto(s)
Habénula/metabolismo , Nicotina/metabolismo , Receptores Nicotínicos/metabolismo , Transducción de Señal , Animales , Femenino , Habénula/efectos de los fármacos , Habénula/fisiología , Masculino , Ratones , Ratones Noqueados , Nicotina/farmacocinética , Nicotina/farmacología , Ratas , Receptores Nicotínicos/deficiencia , Receptores Nicotínicos/genética , Recompensa , Transducción de Señal/efectos de los fármacos , Tabaquismo/genética , Tabaquismo/metabolismo
14.
J Neurosci ; 33(18): 7728-41, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23637165

RESUMEN

Baseline and nicotine-modulated behaviors were assessed in mice harboring a null mutant allele of the nicotinic acetylcholine receptor (nAChR) subunit gene α2 (Chrna2). Homozygous Chrna2(-/-) mice are viable, show expected sex and Mendelian genotype ratios, and exhibit no gross neuroanatomical abnormalities. A broad range of behavioral tests designed to assess genotype-dependent effects on anxiety (elevated plus maze and light/dark box), motor coordination (narrow bean traverse and gait), and locomotor activity revealed no significant differences between mutant mice and age-matched wild-type littermates. Furthermore, a panel of tests measuring traits, such as body position, spontaneous activity, respiration, tremors, body tone, and startle response, revealed normal responses for Chrna2-null mutant mice. However, Chrna2(-/-) mice do exhibit a mild motor or coordination phenotype (a decreased latency to fall during the accelerating rotarod test) and possess an increased sensitivity to nicotine-induced analgesia in the hotplate assay. Relative to wild-type, Chrna2(-/-) mice show potentiated nicotine self-administration and withdrawal behaviors and exhibit a sex-dependent enhancement of nicotine-facilitated cued, but not trace or contextual, fear conditioning. Overall, our results suggest that loss of the mouse nAChR α2 subunit has very limited effects on baseline behavior but does lead to the potentiation of several nicotine-modulated behaviors.


Asunto(s)
Nicotina/administración & dosificación , Agonistas Nicotínicos/administración & dosificación , Receptores Nicotínicos/deficiencia , Síndrome de Abstinencia a Sustancias/fisiopatología , Análisis de Varianza , Animales , Ansiedad/fisiopatología , Condicionamiento Clásico/efectos de los fármacos , Esquema de Medicación , Reacción de Fuga/efectos de los fármacos , Conducta Exploratoria/efectos de los fármacos , Miedo/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfina/efectos adversos , Neurotransmisores/metabolismo , Desempeño Psicomotor/efectos de los fármacos , Tiempo de Reacción , Reflejo/efectos de los fármacos , Reflejo de Sobresalto/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/etiología
15.
Neuropharmacology ; 246: 109833, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176534

RESUMEN

Cigarette smoking remains a leading cause of preventable disease and death worldwide. Due to the devastating negative health effects of smoking, many users attempt to quit, but few are successful in the long-term. Thus, there is a critical need for novel therapeutic approaches. In these investigations, we sought to examine whether cannabidiol (CBD) has the potential to be repurposed as a nicotine cessation therapeutic. In the first study, male and female mice were trained to respond for intravenous nicotine infusions at either a low or moderate nicotine dose and then were pretreated with CBD prior to their drug-taking session. We found that CBD produced a significant decrease in the number of nicotine rewards earned, and this effect was evidenced across CBD doses and with both the low and moderate levels of nicotine intake. These effects on drug intake were not due to general motor-related effects, since mice self-administering food pellets did not alter their behavior with CBD administration. The potential effects of CBD in mitigating nicotine withdrawal symptoms were then investigated. We found that CBD attenuated the somatic signs of nicotine withdrawal and prevented nicotine's hyperalgesia-inducing effects. Taken together, these results demonstrate that modulation of cannabinoid signaling may be a viable therapeutic option as a smoking cessation aid.


Asunto(s)
Cannabidiol , Cese del Hábito de Fumar , Síndrome de Abstinencia a Sustancias , Ratones , Masculino , Femenino , Animales , Nicotina , Cannabidiol/uso terapéutico , Fumar , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Cese del Hábito de Fumar/métodos
16.
bioRxiv ; 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38464047

RESUMEN

Medulloblastoma, the most common pediatric brain malignancy, has Sonic Hedgehog (SHH) and non-SHH group3 subtypes. MAGMAS (Mitochondrial Associated Granulocyte Macrophage colony-stimulating factor Signaling molecules) encode for mitochondrial import inner membrane translocase subunit and is responsible for translocation of matrix proteins across the inner membrane. We previously reported that a small molecule MAGMAS inhibitor, BT9, decreases cell proliferation, migration, and oxidative phosphorylation in adult glioblastoma cell lines. The aim of our study was to investigate whether the chemotherapeutic effect of BT9 can be extended to pediatric medulloblastoma. Methods: Multiple in vitro assays were performed using human DAOY (SHH activated tp53 mutant) and D425 (non-SHH group 3) cells. The impact of BT9 on cellular growth, death, migration, invasion, and metabolic activity were quantified using MTT assay, TUNEL staining, scratch wound assay, Matrigel invasion chambers, and seahorse assay, respectively. Survival following 50mg/kg BT9 treatment was assessed in vivo in immunodeficient mice intracranially implanted with D425 cells. Results: Compared to control, BT9 treatment led to a significant reduction in medulloblastoma cell growth (DAOY, 24hrs IC50: 3.6uM, 48hrs IC50: 2.3uM, 72hrs IC50: 2.1uM; D425 24hrs IC50: 3.4uM, 48hrs IC50: 2.2uM, 72hrs IC50: 2.1uM) and a significant increase in cell death (DAOY, 24hrs p=0.0004, 48hrs p<0.0001; D425, 24hrs p=0.0001, 48hrs p=0.02). In DAOY cells, 3uM BT9 delayed migration, and significantly decreased DAOY and D425 cells invasion (p < 0.0001). Our in vivo study, however, did not extend survival in xenograft mouse model of group3 medulloblastoma compared to vehicle-treated controls. Conclusions: Our in vitro data showed BT9 antitumor efficacy in DAOY and D425 cell lines suggesting that BT9 may represent a promising targeted therapeutic in pediatric medulloblastoma. These data, however, need to be further validated in animal models.

17.
Neurobiol Stress ; 30: 100620, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38486879

RESUMEN

Early development is characterized by dynamic transitions in brain maturation, which may be impacted by environmental factors. Here, we sought to determine the effects of social isolation from postweaning and during adolescence on reward behavior and dopaminergic signaling in male rats. Subjects were socially isolated or group housed at postnatal day 21. Three weeks later, extracellular dopamine concentrations were examined in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (NAc) during a feeding bout. Surprisingly, opposing effects were found in which increased mPFC dopamine concentrations were observed in group housed, but not isolated, rats. In stark contrast, increased dopamine levels were found in the NAc of isolated, but not group housed, rats. Moreover, the absence of an effect in the mPFC of the isolated rats could not be reversed by subsequent group housing, demonstrating the remarkable long-term effects on dopamine signaling dynamics. When provided a highly palatable food, the isolated subjects exhibited a dramatic increase in mPFC dopamine levels when the chocolate was novel, but no effects following chronic chocolate consumption. In contrast, the group housed subjects showed significantly increased dopamine levels only with chronic chocolate consumption. The dopamine changes were correlated with differences in behavioral measures. Importantly, the deficit in reward-related behavior during isolation could be reversed by microinjection of either dopamine or cocaine into the mPFC. Together, these data provide evidence that social isolation from postweaning and during adolescence alters reward-induced dopamine levels in a brain region-specific manner, which has important functional implications for reward-related behavior.

18.
Front Psychiatry ; 14: 1134079, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645635

RESUMEN

Electronic cigarette use has dramatically increased over the last decade. With this recent technological development and wide range of constituents in various products, putative adverse effects on the brain and body have been largely unexplored. Here, we review current evidence linking electronic nicotine cigarette use with potential health consequences and provide evidence supporting an association between drug use and depression in humans. We also examine the biological effects of individual constituents in electronic cigarette aerosols, which include labeled ingredients, such as propylene glycol, vegetable glycerin, nicotine, and flavorants, as well as unlabeled ingredients found in the aerosols, such as carbonyls and heavy metals. Lastly, we examine the effects of electronic cigarette use on endogenous metabolism via changes in cytochrome P450 enzymes, which can thereby impact therapeutic outcomes. While the current evidence offers insight into the potential effects of electronic cigarette use on biological processes, further studies are necessary to determine the long-term clinical relevance of aerosol inhalation.

19.
bioRxiv ; 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37398219

RESUMEN

Exosomes are small extracellular vesicles (sEVs) of ~30-150 nm in diameter that have the same topology as the cell, are enriched in selected exosome cargo proteins, and play important roles in health and disease. To address large unanswered questions regarding exosome biology in vivo, we created the exomap1 transgenic mouse model. In response to Cre recombinase, exomap1 mice express HsCD81mNG, a fusion protein between human CD81, the most highly enriched exosome protein yet described, and the bright green fluorescent protein mNeonGreen. As expected, cell type-specific expression of Cre induced the cell type-specific expression of HsCD81mNG in diverse cell types, correctly localized HsCD81mNG to the plasma membrane, and selectively loaded HsCD81mNG into secreted vesicles that have the size (~80 nm), topology (outside out), and content (presence of mouse exosome markers) of exosomes. Furthermore, mouse cells expressing HsCD81mNG released HsCD81mNG-marked exosomes into blood and other biofluids. Using high-resolution, single-exosome analysis by quantitative single molecule localization microscopy, we show here that that hepatocytes contribute ~15% of the blood exosome population whereas neurons contribute <1% of blood exosomes. These estimates of cell type-specific contributions to blood EV population are consistent with the porosity of liver sinusoidal endothelial cells to particles of ~50-300 nm in diameter, as well as with the impermeability of blood-brain and blood-neuron barriers to particles >5 nm in size. Taken together, these results establish the exomap1 mouse as a useful tool for in vivo studies of exosome biology, and for mapping cell type-specific contributions to biofluid exosome populations. In addition, our data confirm that CD81 is a highly-specific marker for exosomes and is not enriched in the larger microvesicle class of EVs.

20.
Hum Genet ; 131(6): 941-57, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22190154

RESUMEN

Advances in our ability to modify the mouse genome have enhanced our understanding of the genetic and neurobiological mechanisms contributing to addiction-related behaviors underlying substance use and abuse. These experimentally induced manipulations permit greater spatial and temporal specificity for modification of gene expression within specific cellular populations and during select developmental time periods. In this review, we consider the current mouse genetic model systems that have been employed to understand aspects of addiction and highlight significant conceptual advances achieved related to substance use and abuse. The mouse models reviewed herein include conventional knock-out and knock-in, conditional knockout, transgenic, inducible transgenic, mice suitable for optogenetic control of discrete neuronal populations, and phenotype-selected mice. By establishing a reciprocal investigatory relationship between genetic findings in humans and genomic manipulations in mice, a far better understanding of the discrete neuromechanisms underlying addiction can be achieved, which is likely to provide a strong foundation for developing and validating novel therapeutics for the treatment of substance abuse disorders.


Asunto(s)
Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Ingeniería Genética/métodos , Neurobiología/métodos , Organismos Modificados Genéticamente , Trastornos Relacionados con Sustancias/genética , Trastornos Relacionados con Sustancias/fisiopatología , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA