Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Alzheimers Dement ; 20(6): 4043-4065, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38713744

RESUMEN

INTRODUCTION: Cerebrovascular dysfunction is a pathological hallmark of Alzheimer's disease (AD). Nevertheless, detecting cerebrovascular changes within bulk tissues has limited our ability to characterize proteomic alterations from less abundant cell types. METHODS: We conducted quantitative proteomics on bulk brain tissues and isolated cerebrovasculature from the same individuals, encompassing control (N = 28), progressive supranuclear palsy (PSP) (N = 18), and AD (N = 21) cases. RESULTS: Protein co-expression network analysis identified unique cerebrovascular modules significantly correlated with amyloid plaques, cerebrovascular amyloid angiopathy (CAA), and/or tau pathology. The protein products within AD genetic risk loci were concentrated within cerebrovascular modules. The overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with cerebrovascular network highlighted a significant increase of matrisome proteins, SMOC1 and SMOC2, in CSF, plasma, and brain. DISCUSSION: These findings enhance our understanding of cerebrovascular deficits in AD, shedding light on potential biomarkers associated with CAA and vascular dysfunction in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Proteómica , Humanos , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Masculino , Anciano , Femenino , Encéfalo/metabolismo , Tauopatías/líquido cefalorraquídeo , Tauopatías/sangre , Parálisis Supranuclear Progresiva/líquido cefalorraquídeo , Parálisis Supranuclear Progresiva/sangre , Angiopatía Amiloide Cerebral/líquido cefalorraquídeo , Angiopatía Amiloide Cerebral/genética , Persona de Mediana Edad , Anciano de 80 o más Años , Proteínas tau/líquido cefalorraquídeo
2.
Alzheimers Dement ; 19(7): 3005-3018, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36681388

RESUMEN

INTRODUCTION: Post-mortem analysis provides definitive diagnoses of neurodegenerative diseases; however, only a few can be diagnosed during life. METHODS: This study employed statistical tools and machine learning to predict 17 neuropathologic lesions from a cohort of 6518 individuals using 381 clinical features (Table S1). The multisite data allowed validation of the model's robustness by splitting train/test sets by clinical sites. A similar study was performed for predicting Alzheimer's disease (AD) neuropathologic change without specific comorbidities. RESULTS: Prediction results show high performance for certain lesions that match or exceed that of research annotation. Neurodegenerative comorbidities in addition to AD neuropathologic change resulted in compounded, but disproportionate, effects across cognitive domains as the comorbidity number increased. DISCUSSION: Certain clinical features could be strongly associated with multiple neurodegenerative diseases, others were lesion-specific, and some were divergent between lesions. Our approach could benefit clinical research, and genetic and biomarker research by enriching cohorts for desired lesions.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Comorbilidad , Neuropatología , Biomarcadores
3.
Mult Scler ; 28(6): 910-924, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34605319

RESUMEN

BACKGROUND: Ofatumumab, the first fully human anti-CD20 monoclonal antibody, is approved in several countries for relapsing multiple sclerosis (RMS). OBJECTIVE: To demonstrate the bioequivalence of ofatumumab administered by an autoinjector versus a pre-filled syringe (PFS) and to explore the effect of ofatumumab on B-cell depletion. METHODS: APLIOS (NCT03560739) is a 12-week, open-label, parallel-group, phase-2 study in patients with RMS receiving subcutaneous ofatumumab 20 mg every 4 weeks (q4w) (from Week 4, after initial doses on Days 1, 7, and 14). Patients were randomized 10:10:1:1 to autoinjector or PFS in the abdomen, or autoinjector or PFS in the thigh, respectively. Bioequivalence was determined by area under the curve (AUCτ) and maximum plasma concentration (Cmax) for Weeks 8-12. B-cell depletion and safety/tolerability were assessed. RESULTS: A total of 256 patients contributed to the bioequivalence analyses (autoinjector-abdomen, n = 128; PFS-abdomen, n = 128). Abdominal ofatumumab pharmacokinetic exposure was bioequivalent for autoinjector and PFS (geometric mean AUCτ, 487.7 vs 474.1 h × µg/mL (ratio 1.03); Cmax, 1.409 vs 1.409 µg/mL (ratio 1.00)). B-cell counts (median cells/µL) depleted rapidly in all groups from 214.0 (baseline) to 2.0 (Day 14). Ofatumumab was well tolerated. CONCLUSION: Ofatumumab 20 mg q4w self-administered subcutaneously via autoinjector is bioequivalent to PFS administration and provides rapid B-cell depletion.


Asunto(s)
Esclerosis Múltiple , Anticuerpos Monoclonales , Anticuerpos Monoclonales Humanizados/efectos adversos , Humanos , Inyecciones Subcutáneas , Esclerosis Múltiple/inducido químicamente
4.
Cytometry A ; 99(9): 939-945, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33818911

RESUMEN

Mass-tag cell barcoding has increased the throughput, multiplexing, and robustness of multiple cytometry approaches. Previously, we adapted mass cytometry for cells to analyze synaptosome preparations (mass synaptometry or SynTOF), extending mass cytometry to these smaller, anuclear particles. To improve throughput and individual event resolution, we report here the application of palladium-based barcoding in human synaptosomes. Up to 20 individual samples, each with a unique combinatorial barcode, were pooled for labeling with an antibody cocktail. Our synaptosome protocol used six palladium-based barcoding reagents, and in combination with sequential gating increased the identification of presynaptic events approximately fourfold. These same parameters also efficiently resolved two other anuclear particles: human red blood cells and platelets. The addition of palladium-based mass-tag barcoding to our approach improves mass cytometry of synaptic particles.


Asunto(s)
Anticuerpos , Sinaptosomas , Citometría de Flujo , Humanos
5.
Ann Diagn Pathol ; 54: 151800, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34464935

RESUMEN

BACKGROUND: Challenging emerging entities with distinctive molecular signatures may benefit from algorithms for diagnostic work-up. METHODS: Fusion sarcomas (2020-2021, during pandemic) were diagnosed by clinicoradiology, morphology, phenotype, and next-generation sequencing (NGS). RESULTS: Six fusion sarcomas in two males and four females involved the chest-wall, neck, or extremities; ages ranged 2-73, median 18 years. Sizes ranged 5.3-25.0, median 9.1 cm. These include high grade 1) TPR-NTRK1 of proximal femur with a larger rounded soft tissue mass, previously considered osteosarcoma yet without convincing tumor matrix. A pathologic fracture necessitated emergency hemipelvectomy (NED) and 2) novel KANK1-NTRK2 sarcoma of bone and soft tissue with spindled pleomorphic to epithelioid features (AWD metastases). 3) Novel ERC1-ALK unaligned fusion, a low grade infiltrative deep soft tissue hand sarcoma with prominent-vascularity, myopericytoid/lipofibromatosis-like ovoid cells, and collagenized stroma, was successfully treated with ALK-inhibitor (Crizotinib), avoiding amputation. These NTRK and ALK tumors variably express S100 and CD34 and were negative for SOX10. 4) and 5) CIC-DUX4 round cell tumors (rapid metastases/demise), one with COVID superinfection, were previously treated as Ewing sarcoma. These demonstrated mild pleomorphism and necrosis, variable myxoid change and CD99 reactivity, and a distinctive dot-like-Golgi WT1 immunostaining pattern. 6) A chest wall/thoracic round cell sarcoma, focal CD34/ keratins/CK7, revealed nuclear-STAT6, STAT6-NAB2 by NGS, confirming malignant solitary fibrous tumor, intermediate-risk-stratification (AWD metastases). CONCLUSIONS: Recent fusion sarcomas include new KANK1-NTRK2 and ERC1-ALK, the latter successfully treated by targeted-therapy. ALK/NTRK fusion partners TPR and KANK1 suggest unusual high-grade morphology/behavior. Clinicoradiologic, morphologic, and phenotypic algorithms can prompt molecular-targeted immunostains or NGS for final classification and promising inhibitor therapy.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Femorales/genética , Fusión Génica , Neoplasias de Cabeza y Cuello/genética , Sarcoma/genética , Neoplasias de los Tejidos Blandos/genética , Neoplasias Torácicas/genética , Adolescente , Adulto , Anciano , Algoritmos , Antineoplásicos/uso terapéutico , Niño , Preescolar , Extremidades/patología , Femenino , Neoplasias Femorales/diagnóstico , Neoplasias Femorales/tratamiento farmacológico , Neoplasias Femorales/patología , Neoplasias de Cabeza y Cuello/diagnóstico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Fenotipo , Pronóstico , Sarcoma/diagnóstico , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Neoplasias de los Tejidos Blandos/diagnóstico , Neoplasias de los Tejidos Blandos/tratamiento farmacológico , Neoplasias de los Tejidos Blandos/patología , Neoplasias Torácicas/diagnóstico , Neoplasias Torácicas/tratamiento farmacológico , Neoplasias Torácicas/patología , Pared Torácica/patología , Adulto Joven
6.
Cancer ; 126(13): 3102-3113, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32298481

RESUMEN

BACKGROUND: The objectives of this study were to characterize the risk of death (1) from the primary cancer vs competing cause of death; and (2) from various causes of death vs the general poplation. The relative risk of death after a pediatric cancer diagnosis versus the general population and the risk of death from a primary cancer diagnosis versus competing causes of death. METHODS: This retrospective, population-based study used the Surveillance, Epidemiology, and End Results database (1980-2015) and included patients aged 0 to 19 years at the time of diagnosis. Observed deaths were calculated; the risk of death versus the general population was assessed with standardized mortality ratios (SMRs). Competing risk models for the cause of death were performed. RESULTS: There were 58,356 patients who were diagnosed, and the mortality rate was 22.8%. To assess causes of death, 6996 patients who died during the study period were included (45,580 total person-years at risk): 5128 (73%) died of their primary cancer, and 1868 (27%) died of a competing cause. Among all patients, the rate of death from the index cancer was higher than the rate of death from another cause within the first 5 years after diagnosis. The risk of death from a nonprimary cancer began to supersede the rate of death from the primary cancer 10 years after diagnosis for patients with germ cell tumors, lymphomas, and sarcomas. SMRs for the primary cancer were highest within the first 5 years after diagnosis for all cancers (SMRs, 100-50,000; P < .0001). The risk of death from competing causes (heart disease, suicide, and sepsis) was elevated (SMR, >100; P < .001). The risk of dying of heart disease was high, especially for patients with astrocytomas (SMR, 47.84; 95% confidence interval [CI], 27.87-76.59) and neuroblastomas (SMR, 98.59; 95% CI, 47.28-181.32). The risk of dying of suicide was high in most patients, particularly for those with osteosarcomas (SMR, 111.40; 95% CI, 2.82-620.69), Hodgkin lymphomas (SMR, 62.35; 95% CI, 34.89-102.83), and gonadal germ cell tumors (SMR, 28.97; 95% CI, 12.51-57.09). CONCLUSIONS: The cause of death for patients with gonadal germ cell tumors, lymphomas, and sarcomas is more commonly a secondary cancer or noncancerous cause than the primary disease; their risk of death from competing causes (heart disease, suicide, and sepsis) rises throughout life.


Asunto(s)
Causas de Muerte , Neoplasias Primarias Secundarias/mortalidad , Neoplasias/mortalidad , Pediatría/tendencias , Adolescente , Adulto , Niño , Preescolar , Bases de Datos Factuales , Enfermedad de Hodgkin/mortalidad , Enfermedad de Hodgkin/psicología , Humanos , Lactante , Recién Nacido , Masculino , Neoplasias/patología , Neoplasias/psicología , Neoplasias Primarias Secundarias/patología , Estudios Retrospectivos , Suicidio/psicología , Factores de Tiempo , Adulto Joven
7.
Proc Natl Acad Sci U S A ; 114(15): E3101-E3109, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28351974

RESUMEN

Aflatoxin B1 (AFB1) and/or hepatitis B and C viruses are risk factors for human hepatocellular carcinoma (HCC). Available evidence supports the interpretation that formation of AFB1-DNA adducts in hepatocytes seeds a population of mutations, mainly G:C→T:A, and viral processes synergize to accelerate tumorigenesis, perhaps via inflammation. Responding to a need for early-onset evidence predicting disease development, highly accurate duplex sequencing was used to monitor acquisition of high-resolution mutational spectra (HRMS) during the process of hepatocarcinogenesis. Four-day-old male mice were treated with AFB1 using a regimen that induced HCC within 72 wk. For analysis, livers were separated into tumor and adjacent cellular fractions. HRMS of cells surrounding the tumors revealed predominantly G:C→T:A mutations characteristic of AFB1 exposure. Importantly, 25% of all mutations were G→T in one trinucleotide context (CGC; the underlined G is the position of the mutation), which is also a hotspot mutation in human liver tumors whose incidence correlates with AFB1 exposure. The technology proved sufficiently sensitive that the same distinctive spectrum was detected as early as 10 wk after dosing, well before evidence of neoplasia. Additionally, analysis of tumor tissue revealed a more complex pattern than observed in surrounding hepatocytes; tumor HRMS were a composite of the 10-wk spectrum and a more heterogeneous set of mutations that emerged during tumor outgrowth. We propose that the 10-wk HRMS reflects a short-term mutational response to AFB1, and, as such, is an early detection metric for AFB1-induced liver cancer in this mouse model that will be a useful tool to reconstruct the molecular etiology of human hepatocarcinogenesis.


Asunto(s)
Aflatoxina B1/genética , Biomarcadores/metabolismo , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Aductos de ADN/genética , Neoplasias Hepáticas/genética , Mutación , Aflatoxina B1/toxicidad , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/patología , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Aductos de ADN/toxicidad , Femenino , Humanos , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL
8.
Acta Neuropathol ; 138(5): 729-749, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31392412

RESUMEN

Alzheimer's disease (AD) differentially and specifically affects brain regions and neuronal cell types in a predictable pattern. Damage to the brain appears to spread and worsens with time, taking over more regions and activating multiple stressors that can converge to promote vulnerability of certain cell types. At the same time, other cell types and brain regions remain intact in the face of this onslaught of neuropathology. Although neuropathologic descriptions of AD have been extensively expanded and mapped over the last several decades, our understanding of the mechanisms underlying how certain regions and cell populations are specifically vulnerable or resistant has lagged behind. In this review, we detail what is known about the selectivity of local initiation of AD pathology in the hippocampus, its proposed spread via synaptic connections, and the diversity of clinical phenotypes and brain atrophy patterns that may arise from different fibrillar strains of pathologic proteins or genetic predispositions. We summarize accumulated and emerging knowledge of the cellular and molecular basis for neuroanatomic selectivity, consider potential disease-relevant differences between vulnerable and resistant neuronal cell types and isolate molecular markers to identify them.


Asunto(s)
Enfermedad de Alzheimer/patología , Atrofia/patología , Encéfalo/patología , Predisposición Genética a la Enfermedad/genética , Enfermedad de Alzheimer/genética , Atrofia/metabolismo , Humanos , Neuronas/patología , Neuropatología/métodos
9.
Nat Methods ; 12(5): 423-5, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25849638

RESUMEN

The detection of minority variants in mixed samples requires methods for enrichment and accurate sequencing of small genomic intervals. We describe an efficient approach based on sequential rounds of hybridization with biotinylated oligonucleotides that enables more than 1-million-fold enrichment of genomic regions of interest. In conjunction with error-correcting double-stranded molecular tags, our approach enables the quantification of mutations in individual DNA molecules.


Asunto(s)
ADN/genética , Sitios Genéticos , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Variación Genética , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
10.
Mult Scler ; 24(14): 1862-1870, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30415593

RESUMEN

BACKGROUND: Upper extremity (UE) impairment is common with primary progressive multiple sclerosis (PPMS). OBJECTIVE: This exploratory analysis examined the effects of ocrelizumab on confirmed progression (CP) and confirmed improvement (CI) in UE impairment in patients from ORATORIO. METHODS: Patients with PPMS received ocrelizumab 600 mg or placebo every 24 weeks for ⩾120 weeks. The Nine-Hole Peg Test (9HPT) was administered at baseline (BL) and every 12 weeks thereafter. Prespecified exploratory endpoints included change in 9HPT time and proportion of patients with CP of ⩾20% in 9HPT. Analysis populations included intention-to-treat (ITT) patients and subgroups stratified by BL 9HPT time and Expanded Disability Status Scale. Post hoc analyses included the proportion of patients achieving more severe thresholds of CP and the proportion achieving CI in 9HPT. RESULTS: Among ITT patients, ocrelizumab significantly reduced the change in 9HPT time over 120 weeks, the risk of CP of ⩾20% in 9HPT time for both hands and the risk of more severe 9HPT progression versus placebo. Numerical trends also favoured ocrelizumab versus placebo with respect to achieving CI. Consistent directional trends were observed in subgroup analyses. CONCLUSION: Ocrelizumab reduces the risk of UE disability progression and may increase the possibility of improvement versus placebo in PPMS.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Mano/fisiopatología , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Extremidad Superior/fisiopatología , Adulto , Progresión de la Enfermedad , Método Doble Ciego , Femenino , Humanos , Infusiones Intravenosas/métodos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
11.
Proc Natl Acad Sci U S A ; 112(19): E2457-66, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25827226

RESUMEN

Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , Mutación , Nucleótidos/química , Fosfatos/química , Saccharomyces cerevisiae/metabolismo , Alelos , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Ciclo Celular , Análisis Mutacional de ADN , Replicación del ADN , Variación Genética , Humanos , Mutagénesis , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fenotipo , Plásmidos/metabolismo , Fase S , Saccharomyces cerevisiae/genética
12.
PLoS Genet ; 10(2): e1003974, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24516391

RESUMEN

The accumulation of somatic mitochondrial DNA (mtDNA) mutations is implicated in aging and common diseases of the elderly, including cancer and neurodegenerative disease. However, the mechanisms that influence the frequency of somatic mtDNA mutations are poorly understood. To develop a simple invertebrate model system to address this matter, we used the Random Mutation Capture (RMC) assay to characterize the age-dependent frequency and distribution of mtDNA mutations in the fruit fly Drosophila melanogaster. Because oxidative stress is a major suspect in the age-dependent accumulation of somatic mtDNA mutations, we also used the RMC assay to explore the influence of oxidative stress on the somatic mtDNA mutation frequency. We found that many of the features associated with mtDNA mutations in vertebrates are conserved in Drosophila, including a comparable somatic mtDNA mutation frequency (∼10(-5)), an increased frequency of mtDNA mutations with age, and a prevalence of transition mutations. Only a small fraction of the mtDNA mutations detected in young or old animals were G∶C to T∶A transversions, a signature of oxidative damage, and loss-of-function mutations in the mitochondrial superoxide dismutase, Sod2, had no detectable influence on the somatic mtDNA mutation frequency. Moreover, a loss-of-function mutation in Ogg1, which encodes a DNA repair enzyme that removes oxidatively damaged deoxyguanosine residues (8-hydroxy-2'-deoxyguanosine), did not significantly influence the somatic mtDNA mutation frequency of Sod2 mutants. Together, these findings indicate that oxidative stress is not a major cause of somatic mtDNA mutations. Our data instead suggests that somatic mtDNA mutations arise primarily from errors that occur during mtDNA replication. Further studies using Drosophila should aid in the identification of factors that influence the frequency of somatic mtDNA mutations.


Asunto(s)
Envejecimiento/genética , ADN Mitocondrial/genética , Mutación/genética , Estrés Oxidativo , Envejecimiento/patología , Animales , ADN Glicosilasas/genética , Reparación del ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Mitocondrias/genética , Mitocondrias/patología , Modelos Animales , Tasa de Mutación , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética
13.
Nature ; 512(7513): 143-4, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25079325
14.
Proc Natl Acad Sci U S A ; 109(36): 14508-13, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22853953

RESUMEN

Next-generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of ~1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when "deep sequencing" genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, we have developed a method termed Duplex Sequencing. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors result in mutations in only one strand and can thus be discounted as technical error. We determine that Duplex Sequencing has a theoretical background error rate of less than one artifactual mutation per billion nucleotides sequenced. In addition, we establish that detection of mutations present in only one of the two strands of duplex DNA can be used to identify sites of DNA damage. We apply the method to directly assess the frequency and pattern of random mutations in mitochondrial DNA from human cells.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenoma/genética , Mutación/genética , Neoplasias/genética , Proyectos de Investigación/estadística & datos numéricos , Daño del ADN/genética , Humanos , Oligonucleótidos/genética
15.
Lab Invest ; 94(8): 851-62, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24955894

RESUMEN

Piperidine-based peroxisome proliferator-activated receptor-α agonists are agents that are efficacious in improving lipid, glycemic, and inflammatory indicators in diabetes and obesity. This study sought to determine whether CP-900691 ((S)-3-[3-(1-carboxy-1-methyl-ethoxy)-phenyl]-piperidine-1-carboxylic acid 4-trifluoromethyl-benzyl ester; CP), a member of this novel class of agents, by decreasing plasma triglycerides, could prevent diabetic nephropathy in the Black and Tan, BRachyuric (BTBR) ob/ob mouse model of type 2 diabetes mellitus. Four-week old female BTBR WT and BTBR ob/ob mice received either regular chow or one containing CP (3 mg/kg per day) for 14 weeks. CP elevated plasma high-density lipoprotein, albuminuria, and urinary excretion of 8-epi PGF(2α), a product of the nonenzymatic metabolism of arachidonic acid and whose production is elevated in oxidative stress, in BTBR WT mice. In BTBR ob/ob mice, CP reduced plasma triglycerides and non-esterified fatty acids, fasting blood glucose, body weight, and plasma interleukin-6, while concomitantly improving insulin resistance. Despite these beneficial metabolic effects, CP had no effect on elevated plasma insulin, 8-epi PGF(2α) excretion, and albuminuria, and surprisingly, did not ameliorate the development of diabetic nephropathy, having no effect on the accumulation of renal macrophages, glomerular hypertrophy, and increased mesangial matrix expansion. In addition, CP did not increase plasma high-density lipoprotein in BTBR ob/ob mice, while paradoxically increasing total cholesterol levels. These findings indicate that 8-epi PGF(2α), possibly along with hyperinsulinemia and inflammatory and dysfunctional lipoproteins, is integral to the development of diabetic nephropathy and should be considered as a potential target of therapy in the treatment of diabetic nephropathy.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Hipoglucemiantes/uso terapéutico , Riñón/efectos de los fármacos , Obesidad/prevención & control , PPAR alfa/agonistas , Piperidinas/uso terapéutico , Propionatos/uso terapéutico , Albuminuria/complicaciones , Albuminuria/fisiopatología , Albuminuria/prevención & control , Animales , Fármacos Antiobesidad/efectos adversos , Fármacos Antiobesidad/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/fisiopatología , Dinoprost/agonistas , Dinoprost/análogos & derivados , Dinoprost/orina , Progresión de la Enfermedad , Femenino , Mesangio Glomerular/efectos de los fármacos , Mesangio Glomerular/inmunología , Mesangio Glomerular/metabolismo , Mesangio Glomerular/patología , Hipercolesterolemia/inducido químicamente , Hipercolesterolemia/complicaciones , Hipercolesterolemia/fisiopatología , Hipercolesterolemia/prevención & control , Hipertrigliceridemia/complicaciones , Hipertrigliceridemia/prevención & control , Hipertrofia , Hipoglucemiantes/efectos adversos , Hipolipemiantes/efectos adversos , Hipolipemiantes/uso terapéutico , Resistencia a la Insulina , Riñón/inmunología , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Endogámicos , Ratones Obesos , Obesidad/complicaciones , PPAR alfa/metabolismo , Piperidinas/efectos adversos , Propionatos/efectos adversos
16.
Cancer Metastasis Rev ; 32(3-4): 353-61, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23592419

RESUMEN

The mutator phenotype hypothesis proposes that the mutation rate of normal cells is insufficient to account for the large number of mutations found in human cancers. Consequently, human tumors exhibit an elevated mutation rate that increases the likelihood of a tumor acquiring advantageous mutations. The hypothesis predicts that tumors are composed of cells harboring hundreds of thousands of mutations, as opposed to a small number of specific driver mutations, and that malignant cells within a tumor therefore constitute a highly heterogeneous population. As a result, drugs targeting specific mutated driver genes or even pathways of mutated driver genes will have only limited anticancer potential. In addition, because the tumor is composed of such a diverse cell population, tumor cells harboring drug-resistant mutations will exist prior to the administration of any chemotherapeutic agent. We present recent evidence in support of the mutator phenotype hypothesis, major arguments against this concept, and discuss the clinical consequences of tumor evolution fueled by an elevated mutation rate. We also consider the therapeutic possibility of altering the rate of mutation accumulation. Most significantly, we contend that there is a need to fundamentally reconsider current approaches to personalized cancer therapy. We propose that targeting cellular pathways that alter the rate of mutation accumulation in tumors will ultimately prove more effective than attempting to identify and target mutant driver genes or driver pathways.


Asunto(s)
Transformación Celular Neoplásica/genética , Mutación , Neoplasias/genética , Animales , Humanos , Fenotipo
17.
Skinmed ; 12(1): 54-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24720087
18.
Res Sq ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38464223

RESUMEN

Introduction: Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated to ß-amyloid (Aß) and tau pathology in Alzheimer's disease (AD) brain and cerebrospinal fluid (CSF). However, it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic approaches. Methods: We employed heparin affinity chromatography, followed by off-line fractionation and tandem mass tag mass spectrometry (TMT-MS), to capture and enrich HBPs in plasma obtained from AD (n=62) and control (n=47) samples. These profiles were then correlated to a consensus AD brain proteome, as well as with Aß, tau and phosphorylated tau (pTau) CSF biomarkers from the same individuals. We then leveraged published human postmortem brain proteome datasets to assess the overlap with the heparin-enriched plasma proteome. Results: Heparin-enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and thrombin, and depleted high-abundance proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude were detectable. Utilizing a consensus AD brain protein co-expression network, we observed that specific plasma HBPs exhibited consistent direction of change in both brain and plasma, whereas others displayed divergent changes highlighting the complex interplay between the two compartments. Elevated HBPs in AD plasma, when compared to controls, included members of the matrisome module in brain that accumulate within Aß deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and APOE. Additionally, heparin enriched plasma proteins demonstrated significant correlations with conventional AD CSF biomarkers, including Aß, total tau, pTau, and plasma pTau from the same individuals. Conclusion: These findings support the utility of a heparin-affinity approach for enriching amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes in the AD brain.

19.
medRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260316

RESUMEN

Dysfunction of the neurovascular unit stands as a significant pathological hallmark of Alzheimer's disease (AD) and age-related neurodegenerative diseases. Nevertheless, detecting vascular changes in the brain within bulk tissues has proven challenging, limiting our ability to characterize proteomic alterations from less abundant cell types. To address this challenge, we conducted quantitative proteomic analyses on both bulk brain tissues and cerebrovascular-enriched fractions from the same individuals, encompassing cognitively unimpaired control, progressive supranuclear palsy (PSP), and AD cases. Protein co-expression network analysis identified modules unique to the cerebrovascular fractions, specifically enriched with pericytes, endothelial cells, and smooth muscle cells. Many of these modules also exhibited significant correlations with amyloid plaques, cerebral amyloid angiopathy (CAA), and/or tau pathology in the brain. Notably, the protein products within AD genetic risk loci were found concentrated within modules unique to the vascular fractions, consistent with a role of cerebrovascular deficits in the etiology of AD. To prioritize peripheral AD biomarkers associated with vascular dysfunction, we assessed the overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with a vascular-enriched network modules in the brain. This analysis highlighted matrisome proteins, SMOC1 and SMOC2, as being increased in CSF, plasma, and brain. Immunohistochemical analysis revealed SMOC1 deposition in both parenchymal plaques and CAA in the AD brain, whereas SMOC2 was predominantly localized to CAA. Collectively, these findings significantly enhance our understanding of the involvement of cerebrovascular abnormalities in AD, shedding light on potential biomarkers and molecular pathways associated with CAA and vascular dysfunction in neurodegenerative diseases.

20.
Nat Biomed Eng ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898173

RESUMEN

In pathology, the deployment of artificial intelligence (AI) in clinical settings is constrained by limitations in data collection and in model transparency and interpretability. Here we describe a digital pathology framework, nuclei.io, that incorporates active learning and human-in-the-loop real-time feedback for the rapid creation of diverse datasets and models. We validate the effectiveness of the framework via two crossover user studies that leveraged collaboration between the AI and the pathologist, including the identification of plasma cells in endometrial biopsies and the detection of colorectal cancer metastasis in lymph nodes. In both studies, nuclei.io yielded considerable diagnostic performance improvements. Collaboration between clinicians and AI will aid digital pathology by enhancing accuracies and efficiencies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA