Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Malar J ; 23(1): 60, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413961

RESUMEN

BACKGROUND: When integrated with insecticide-treated bed nets, larval control of Anopheles mosquitoes could fast-track reductions in the incidence of human malaria. However, larval control interventions may deliver suboptimal outcomes where the preferred breeding places of mosquito vectors are not well known. This study investigated the breeding habitat choices of Anopheles mosquitoes in southern Nigeria. The objective was to identify priority sites for mosquito larval management in selected urban and periurban locations where malaria remains a public health burden.  METHODS: Mosquito larvae were collected in urban and periurban water bodies during the wet-dry season interface in Edo, Delta, and Anambra States. Field-collected larvae were identified based on PCR gel-electrophoresis and amplicon sequencing, while the associations between Anopheles larvae and the properties and locations of water bodies were assessed using a range of statistical methods. RESULTS: Mosquito breeding sites were either man-made (72.09%) or natural (27.91%) and mostly drainages (48.84%) and puddles (25.58%). Anopheles larvae occurred in drainages, puddles, stream margins, and a concrete well, and were absent in drums, buckets, car tires, and a water-holding iron pan, all of which contained culicine larvae. Wild-caught Anopheles larvae comprised Anopheles coluzzii (80.51%), Anopheles gambiae sensu stricto (s.s.) (11.54%), and Anopheles arabiensis (7.95%); a species-specific PCR confirmed the absence of the invasive urban malaria vector Anopheles stephensi among field-collected larvae. Anopheles arabiensis, An. coluzzii, and An. gambiae s.s. displayed preferences for turbid, lowland, and partially sunlit water bodies, respectively. Furthermore, An. arabiensis preferred breeding sites located outside 500 m of households, whereas An. gambiae s.s. and An. coluzzii had increased detection odds in sites within 500 m of households. Anopheles gambiae s.s. and An. coluzzii were also more likely to be present in natural water bodies; meanwhile, 96.77% of An. arabiensis were in man-made water bodies. Intraspecific genetic variations were little in the dominant vector An. coluzzii, while breeding habitat choices of populations made no statistically significant contributions to these variations. CONCLUSION: Sibling malaria vectors in the An. gambiae complex display divergent preferences for aquatic breeding habitats in southern Nigeria. The findings are relevant for planning targeted larval control of An. coluzzii whose increasing evolutionary adaptations to urban ecologies are driving the proliferation of the mosquito, and An. arabiensis whose adults typically evade the effects of treated bed nets due to exophilic tendencies.


Asunto(s)
Anopheles , Malaria , Animales , Adulto , Humanos , Anopheles/genética , Mosquitos Vectores , Nigeria , Malaria/epidemiología , Agua , Larva , Cruzamiento
2.
J Infect Dis ; 223(4): 673-685, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32888023

RESUMEN

BACKGROUND: Zika virus (ZIKV) is a mosquito-borne virus that is also transmitted sexually; however, the epidemiological relevance of ZIKV sexual transmission in endemic regions is unclear. METHODS: We performed a household-based serosurvey in Northeast Brazil to evaluate the differential exposure to ZIKV and chikungunya virus (CHIKV) among households. Individuals who participated in our previous arboviral disease cohort (indexes) were recontacted and enrolled, and their household members were newly enrolled. RESULTS: The relative risk of sexual partners being ZIKV-seropositive when living with a ZIKV-seropositive index participant was significantly higher, whereas this was not observed among nonsexual partners of the index. For CHIKV, both sexual and nonsexual partner household members living with a CHIKV-seropositive index had a significantly higher risk of being seropositive. In the nonindex-based dyadic and generalized linear mixed model analyses, the odds of sexual dyads having a concordant ZIKV plaque reduction neutralization test result was significantly higher. We have also analyzed retrospective clinical data according to the participants' exposure to ZIKV and CHIKV. CONCLUSIONS: Our data suggest that ZIKV sexual transmission may be a key factor for the high ZIKV seroprevalence among households in endemic areas and raises important questions about differential disease from the 2 modes of transmission.


Asunto(s)
Parejas Sexuales , Enfermedades Virales de Transmisión Sexual/epidemiología , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/transmisión , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Brasil/epidemiología , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/transmisión , Virus Chikungunya/inmunología , Niño , Preescolar , Composición Familiar , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Riesgo , Estudios Seroepidemiológicos , Conducta Sexual , Enfermedades Virales de Transmisión Sexual/transmisión , Adulto Joven , Virus Zika/inmunología
3.
J Gen Virol ; 102(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34410903

RESUMEN

An infectious agent's pathogenic and transmission potential is heavily influenced by early events during the asymptomatic or subclinical phase of disease. During this phase, the presence of infectious agent may be relatively low. An important example of this is Zika virus (ZIKV), which can cross the placenta and infect the foetus, even in mothers with subclinical infections. These subclinical infections represent roughly 80 % of all human infections. Initial ZIKV pathogenesis studies were performed in type I interferon receptor (IFNAR) knockout mice. Blunting the interferon response resulted in robust infectivity, and increased the utility of mice to model ZIKV infections. However, due to the removal of the interferon response, the use of these models impedes full characterization of immune responses to ZIKV-related pathologies. Moreover, IFNAR-deficient models represent severe disease whereas less is known regarding subclinical infections. Investigation of the anti-viral immune response elicited at the maternal-foetal interface is critical to fully understand mechanisms involved in foetal infection, foetal development, and disease processes recognized to occur during subclinical maternal infections. Thus, immunocompetent experimental models that recapitulate natural infections are needed. We have established subclinical intravaginal ZIKV infections in mice and guinea pigs. We found that these infections resulted in: the presence of both ZIKV RNA transcripts and infectious virus in maternal and placental tissues, establishment of foetal infections and ZIKV-mediated CXCL10 expression. These models will aid in discerning the mechanisms of subclinical ZIKV mother-to-offspring transmission, and by extension can be used to investigate other maternal infections that impact foetal development.


Asunto(s)
Feto , Placenta , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika/virología , Virus Zika , Animales , Chlorocebus aethiops , Femenino , Feto/inmunología , Feto/virología , Cobayas , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Placenta/inmunología , Placenta/virología , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/virología , Células Vero , Virus Zika/inmunología , Virus Zika/patogenicidad
4.
J Virol ; 94(20)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32759315

RESUMEN

Partitiviruses are segmented, multipartite double-stranded RNA (dsRNA) viruses that until recently were only known to infect fungi, plants, and protozoans. Metagenomic surveys have revealed that partitivirus-like sequences are also commonly associated with arthropods. One arthropod-associated partitivirus, galbut virus, is common in wild populations of Drosophila melanogaster To begin to understand the processes that underlie this virus's high global prevalence, we established colonies of wild-caught infected flies. Infection remained at stably high levels over 3 years, with between 63 and 100% of individual flies infected. Galbut virus infects fly cells and replicates in tissues throughout infected adults, including reproductive tissues and the gut epithelium. We detected no evidence of horizontal transmission via ingestion, but vertical transmission from either infected females or infected males was ∼100% efficient. Vertical transmission of a related partitivirus, verdadero virus, that we discovered in a laboratory colony of Aedes aegypti mosquitoes was similarly efficient. This suggests that efficient biparental vertical transmission may be a feature of at least a subset of insect-infecting partitiviruses. To study the impact of galbut virus infection free from the confounding effect of other viruses, we generated an inbred line of flies with galbut virus as the only detectable virus infection. We were able to transmit infection experimentally via microinjection of homogenate from these galbut-only flies. This sets the stage for experiments to understand the biological impact and possible utility of partitiviruses infecting model organisms and disease vectors.IMPORTANCE Galbut virus is a recently discovered partitivirus that is extraordinarily common in wild populations of the model organism Drosophila melanogaster Like for most viruses discovered through metagenomics, most of the basic biological questions about this virus remain unanswered. We found that galbut virus, along with a closely related partitivirus found in Aedes aegypti mosquitoes, is transmitted from infected females or males to offspring with ∼100% efficiency and can be maintained in laboratory colonies over years. This efficient transmission mechanism likely underlies the successful spread of these viruses through insect populations. We created Drosophila lines that contained galbut virus as the only virus infection and showed that these flies can be used as a source for experimental infections. This provides insight into how arthropod-infecting partitiviruses may be maintained in nature and sets the stage for exploration of their biology and potential utility.


Asunto(s)
Aedes/virología , Virus ARN Bicatenario/metabolismo , Animales , Drosophila melanogaster , Femenino , Masculino
5.
Clin Trials ; 18(5): 582-593, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34218684

RESUMEN

BACKGROUND: Cluster-randomized trials allow for the evaluation of a community-level or group-/cluster-level intervention. For studies that require a cluster-randomized trial design to evaluate cluster-level interventions aimed at controlling vector-borne diseases, it may be difficult to assess a large number of clusters while performing the additional work needed to monitor participants, vectors, and environmental factors associated with the disease. One such example of a cluster-randomized trial with few clusters was the "efficacy and risk of harms of repeated ivermectin mass drug administrations for control of malaria" trial. Although previous work has provided recommendations for analyzing trials like repeated ivermectin mass drug administrations for control of malaria, additional evaluation of the multiple approaches for analysis is needed for study designs with count outcomes. METHODS: Using a simulation study, we applied three analysis frameworks to three cluster-randomized trial designs (single-year, 2-year parallel, and 2-year crossover) in the context of a 2-year parallel follow-up of repeated ivermectin mass drug administrations for control of malaria. Mixed-effects models, generalized estimating equations, and cluster-level analyses were evaluated. Additional 2-year parallel designs with different numbers of clusters and different cluster correlations were also explored. RESULTS: Mixed-effects models with a small sample correction and unweighted cluster-level summaries yielded both high power and control of the Type I error rate. Generalized estimating equation approaches that utilized small sample corrections controlled the Type I error rate but did not confer greater power when compared to a mixed model approach with small sample correction. The crossover design generally yielded higher power relative to the parallel equivalent. Differences in power between analysis methods became less pronounced as the number of clusters increased. The strength of within-cluster correlation impacted the relative differences in power. CONCLUSION: Regardless of study design, cluster-level analyses as well as individual-level analyses like mixed-effects models or generalized estimating equations with small sample size corrections can both provide reliable results in small cluster settings. For 2-year parallel follow-up of repeated ivermectin mass drug administrations for control of malaria, we recommend a mixed-effects model with a pseudo-likelihood approximation method and Kenward-Roger correction. Similarly designed studies with small sample sizes and count outcomes should consider adjustments for small sample sizes when using a mixed-effects model or generalized estimating equation for analysis. Although the 2-year parallel follow-up of repeated ivermectin mass drug administrations for control of malaria is already underway as a parallel trial, applying the simulation parameters to a crossover design yielded improved power, suggesting that crossover designs may be valuable in settings where the number of available clusters is limited. Finally, the sensitivity of the analysis approach to the strength of within-cluster correlation should be carefully considered when selecting the primary analysis for a cluster-randomized trial.


Asunto(s)
Ivermectina , Malaria , Análisis por Conglomerados , Estudios de Seguimiento , Humanos , Malaria/tratamiento farmacológico , Malaria/prevención & control , Administración Masiva de Medicamentos , Ensayos Clínicos Controlados Aleatorios como Asunto , Proyectos de Investigación , Tamaño de la Muestra
6.
Lancet ; 393(10180): 1517-1526, 2019 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-30878222

RESUMEN

BACKGROUND: Ivermectin is widely used in mass drug administrations for controlling neglected parasitic diseases, and can be lethal to malaria vectors that bite treated humans. Therefore, it could be a new tool to reduce plasmodium transmission. We tested the hypothesis that frequently repeated mass administrations of ivermectin to village residents would reduce clinical malaria episodes in children and would be well tolerated with minimal harms. METHODS: We invited villages (clusters) in Burkina Faso to participate in a single-blind (outcomes assessor), parallel-assignment, two-arm, cluster-randomised trial over the 2015 rainy season. Villages were assigned (1:1) by random draw to either the intervention group or the control group. In both groups, all eligible participants who consented to the treatment and were at least 90 cm in height received single oral doses of ivermectin (150-200 µg/kg) and albendazole (400 mg), and those in the intervention group received five further doses of ivermectin alone at 3-week intervals thereafter over the 18-week treatment phase. The primary outcome was cumulative incidence of uncomplicated malaria episodes over 18 weeks (analysed on a cluster intention-to-treat basis) in an active case detection cohort of children aged 5 years or younger living in the study villages. This trial is registered with ClinicalTrials.gov, number NCT02509481. FINDINGS: Eight villages agreed to participate, and four were randomly assigned to each group. 2712 participants (1333 [49%] males and 1379 [51%] females; median age 15 years [IQR 6-34]), including 590 children aged 5 years or younger, provided consent and were enrolled between May 22 and July 20, 2015 (except for 77 participants enrolled after these dates because of unavailability before the first mass drug administration, travel into the village during the trial, or birth), with 1447 enrolled into the intervention group and 1265 into the control group. 330 (23%) participants in the intervention group and 233 (18%) in the control group met the exclusion criteria for mass drug administration. Most children in the active case detection cohort were not treated because of height restrictions. 14 (4%) children in the intervention group and 10 (4%) in the control group were lost to follow-up. Cumulative malaria incidence was reduced in the intervention group (648 episodes among 327 children; estimated mean 2·00 episodes per child) compared with the control group (647 episodes among 263 children; 2·49 episodes per child; risk difference -0·49 [95% CI -0·79 to -0·21], p=0·0009, adjusted for sex and clustering). The risk of adverse events among all participants did not differ between groups (45 events [3%] among 1447 participants in the intervention group vs 24 events [2%] among 1265 in the control group; risk ratio 1·63 [1·01 to 2·67]; risk difference 1·21 [0·04 to 2·38], p=0·060), and no adverse reactions were reported. INTERPRETATION: Frequently repeated mass administrations of ivermectin during the malaria transmission season can reduce malaria episodes among children without significantly increasing harms in the populace. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
Antiparasitarios/administración & dosificación , Ivermectina/administración & dosificación , Malaria Falciparum/tratamiento farmacológico , Administración Masiva de Medicamentos , Adolescente , Adulto , Albendazol/uso terapéutico , Antiparasitarios/efectos adversos , Burkina Faso , Niño , Análisis por Conglomerados , Esquema de Medicación , Femenino , Humanos , Ivermectina/efectos adversos , Masculino , Resultado del Tratamiento , Adulto Joven
7.
Malar J ; 19(1): 238, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631416

RESUMEN

BACKGROUND: Since 2014, seasonal malaria chemoprevention (SMC) with amodiaquine-sulfadoxine-pyrimethamine (AQ-SP) has been implemented on a large scale during the high malaria transmission season in Burkina Faso. This paper reports the prevalence of microscopic and submicroscopic malaria infection at the outset and after the first round of SMC in children under 5 years old in Bama, Burkina Faso, as well as host and parasite factors involved in mediating the efficacy and tolerability of SMC. METHODS: Two sequential cross-sectional surveys were conducted in late July and August 2017 during the first month of SMC in a rural area in southwest Burkina Faso. Blood smears and dried blood spots were collected from 106 to 93 children under five, respectively, at the start of SMC and again 3 weeks later. Malaria infection was detected by microscopy and by PCR from dried blood spots. For all children, day 7 plasma concentrations of desethylamodiaquine (DEAQ) were measured and CYP2C8 genetic variants influencing AQ metabolism were genotyped. Samples were additionally genotyped for pfcrt K76T and pfmdr1 N86Y, molecular markers associated with reduced amodiaquine susceptibility. RESULTS: 2.8% (3/106) of children were positive for Plasmodium falciparum infection by microscopy and 13.2% (14/106) by nested PCR within 2 days of SMC administration. Three weeks after SMC administration, in the same households, 4.3% (4/93) of samples were positive by microscopy and 14.0% (13/93) by PCR (p = 0.0007). CYP2C8*2, associated with impaired amodiaquine metabolism, was common with an allelic frequency of 17.1% (95% CI 10.0-24.2). Day 7 concentration of DEAQ ranged from 0.48 to 362.80 ng/mL with a median concentration of 56.34 ng/mL. Pfmdr1 N86 predominated at both time points, whilst a non-significant trend towards a higher prevalence of pfcrt 76T was seen at week 3. CONCLUSION: This study showed a moderate prevalence of low-level malaria parasitaemia in children 3 weeks following SMC during the first month of administration. Day 7 concentrations of the active DEAQ metabolite varied widely, likely reflecting variability in adherence and possibly metabolism. These findings highlight factors that may contribute to the effectiveness of SMC in children in a high transmission setting.


Asunto(s)
Amodiaquina/análogos & derivados , Antimaláricos/sangre , Citocromo P-450 CYP2C8/genética , Resistencia a Medicamentos/genética , Genes Protozoarios/efectos de los fármacos , Malaria Falciparum/prevención & control , Polimorfismo Genético/efectos de los fármacos , Amodiaquina/sangre , Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Burkina Faso/epidemiología , Quimioprevención , Preescolar , Estudios Transversales , Femenino , Humanos , Lactante , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Masculino , Plasma/química
9.
BMC Genomics ; 16: 797, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26471037

RESUMEN

BACKGROUND: Ivermectin has been proposed as a novel malaria transmission control tool based on its insecticidal properties and unique route of acquisition through human blood. To maximize ivermectin's effect and identify potential resistance/tolerance mechanisms, it is important to understand its effect on mosquito physiology and potential to shift mosquito population age-structure. We therefore investigated ivermectin susceptibility and gene expression changes in several age groups of female Anopheles gambiae mosquitoes. METHODS: The effect of aging on ivermectin susceptibility was analyzed in three age groups (2, 6, and 14-days) of colonized female Anopheles gambiaemosquitoes using standard survivorship assays. Gene expression patterns were then analyzed by transcriptome sequencing on an Illumina HiSeq 2500 platform. RT-qPCR was used to validate transcriptional changes and also to examine expression in a different, colonized strain and in wild mosquitoes, both of which blood fed naturally on an ivermectin-treated person. RESULTS: Mosquitoes of different ages and blood meal history died at different frequencies after ingesting ivermectin. Mortality was lowest in 2-day old mosquitoes exposed on their first blood meal and highest in 6-day old mosquitoes exposed on their second blood meal. Twenty-four hours following ivermectin ingestion, 101 and 187 genes were differentially-expressed relative to control blood-fed, in 2 and 6-day groups, respectively. Transcription patterns of select genes were similar in membrane-fed, colonized, and naturally-fed wild vectors. Transcripts from several unexpected functional classes were highly up-regulated, including Niemann-Pick Type C (NPC) genes, peritrophic matrix-associated genes, and immune-response genes, and these exhibited different transcription patterns between age groups, which may explain the observed susceptibility differences. Niemann-Pick Type 2 genes were the most highly up-regulated transcripts after ivermectin ingestion (up to 160 fold) and comparing phylogeny to transcriptional patterns revealed that NPCs have rapidly evolved and separate members respond to either blood meals or to ivermectin. CONCLUSION: We present evidence of increased ivermectin susceptibility in older An. gambiae mosquitoes that had previously bloodfed. Differential expression analysis suggests complex midgut interactions resulting from ivermectin ingestion that likely involve blood meal digestion physiological responses, midgut microflora, and innate immune responses. Thus, the transcription of certain gene families is consistently affected by ivermectin ingestion, and may provide important clues to ivermectin's broad effects on malaria vectors. These findings contribute to the growing understanding of ivermectin's potential as a transmission control tool.


Asunto(s)
Anopheles/genética , Sangre/efectos de los fármacos , Ivermectina/farmacología , Malaria/prevención & control , Animales , Anopheles/efectos de los fármacos , Anopheles/parasitología , Femenino , Regulación de la Expresión Génica , Humanos , Malaria/sangre , Malaria/parasitología , Malaria/transmisión
11.
J Exp Biol ; 218(Pt 10): 1487-95, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25994632

RESUMEN

The glutamate-gated chloride channel (GluCl) is a highly sensitive insecticide target of the avermectin class of insecticides. As an alternative to using chemical insecticides to kill mosquitoes, we tested the effects of purified immunoglobulin G (IgG) targeting the extracellular domain of GluCl from Anopheles gambiae (AgGluCl) on the survivorship of three key mosquito disease vectors: Anopheles gambiae s.s., Aedes aegypti and Culex tarsalis. When administered through a single blood meal, anti-AgGluCl IgG reduced the survivorship of A. gambiae in a dose-dependent manner (LC50: 2.82 mg ml(-1), range 2.68-2.96 mg ml(-1)) but not A. aegypti or C. tarsalis. We previously demonstrated that AgGluCl is only located in tissues of the head and thorax of A. gambiae. To verify that AgGluCl IgG is affecting target antigens found outside the midgut, we injected it directly into the hemocoel via intrathoracic injection. A single, physiologically relevant concentration of anti-AgGluCl IgG injected into the hemocoel equally reduced mosquito survivorship of all three species. To test whether anti-AgGluCl IgG was entering the hemocoel of each of these mosquitoes, we fed mosquitoes a blood meal containing anti-AgGluCl IgG and subsequently extracted their hemolymph. We only detected IgG in the hemolymph of A. gambiae, suggesting that resistance of A. aegypti and C. tarsalis to anti-AgGluCl IgG found in blood meals is due to deficient IgG translocation across the midgut. We predicted that anti-AgGluCl IgG's mode of action is by antagonizing GluCl activity. To test this hypothesis, we fed A. gambiae blood meals containing anti-AgGluCl IgG and the GluCl agonist ivermectin (IVM). Anti-AgGluCl IgG attenuated the mosquitocidal effects of IVM, suggesting that anti-AgGluCl IgG antagonizes IVM-induced activation of GluCl. Lastly, we stained adult, female A. aegypti and C. tarsalis for GluCl expression. Neuronal GluCl expression in these mosquitoes was similar to previously reported A. gambiae GluCl expression; however, we also discovered GluCl staining on the basolateral surface of their midgut epithelial cells, suggesting important physiological differences in Culicine and Anopheline mosquitoes.


Asunto(s)
Aedes/efectos de los fármacos , Anopheles/efectos de los fármacos , Canales de Cloruro/metabolismo , Culex/efectos de los fármacos , Inmunoglobulina G/farmacología , Insecticidas/farmacología , Aedes/fisiología , Secuencia de Aminoácidos , Animales , Anopheles/fisiología , Antígenos/inmunología , Canales de Cloruro/inmunología , Culex/fisiología , Femenino , Hemolinfa/inmunología , Control de Insectos , Insectos Vectores , Ivermectina/análogos & derivados , Ivermectina/farmacología , Datos de Secuencia Molecular , Especificidad de la Especie
12.
J Exp Biol ; 218(Pt 10): 1478-86, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25994631

RESUMEN

The use of insecticide-treated nets and indoor residual insecticides targeting adult mosquito vectors is a key element in malaria control programs. However, mosquito resistance to the insecticides used in these applications threatens malaria control efforts. Recently, the mass drug administration of ivermectin (IVM) has been shown to kill Anopheles gambiae mosquitoes and disrupt Plasmodium falciparum transmission in the field. We cloned the molecular target of IVM from A. gambiae, the glutamate-gated chloride channel (AgGluCl), and characterized its transcriptional patterns, protein expression and functional responses to glutamate and IVM. AgGluCl cloning revealed an unpredicted fourth splice isoform as well as a novel exon and splice site. The predicted gene products contained heterogeneity in the N-terminal extracellular domain and the intracellular loop region. Responses to glutamate and IVM were measured using two-electrode voltage clamp on Xenopus laevis oocytes expressing AgGluCl. IVM induced non-persistent currents in AgGluCl-a1 and did not potentiate glutamate responses. In contrast, AgGluCl-b was insensitive to IVM, suggesting that the AgGluCl gene could produce IVM-sensitive and -insensitive homomultimers from alternative splicing. AgGluCl isoform-specific transcripts were measured across tissues, ages, blood feeding status and sex, and were found to be differentially transcribed across these physiological variables. Lastly, we stained adult, female A. gambiae for GluCl expression. The channel was expressed in the antenna, Johnston's organ, supraesophageal ganglion and thoracic ganglia. In summary, we have characterized the first GluCl from a mosquito, A. gambiae, and described its unique activity and expression with respect to it as the target of the insecticide IVM.


Asunto(s)
Anopheles/efectos de los fármacos , Canales de Cloruro/metabolismo , Insecticidas/farmacología , Ivermectina/farmacología , Factores de Edad , Empalme Alternativo , Animales , Anopheles/metabolismo , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/genética , Femenino , Ácido Glutámico/farmacología , Insectos Vectores , Masculino , Oocitos/fisiología , Xenopus laevis
13.
Malar J ; 14: 243, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26068560

RESUMEN

The potential use of ivermectin as an additional vector control tool is receiving increased attention from the malaria elimination community, driven by the increased importance of outdoor/residual malaria transmission and the threat of insecticide resistance where vector tools have been scaled-up. This report summarizes the emerging evidence presented at a side meeting on "Ivermectin for malaria elimination: current status and future directions" at the annual meeting of the American Society of Tropical Medicine and Hygiene in New Orleans on November 4, 2014. One outcome was the creation of the "Ivermectin Research for Malaria Elimination Network" whose main goal is to establish a common research agenda to generate the evidence base on whether ivermectin-based strategies should be added to the emerging arsenal to interrupt malaria transmission.


Asunto(s)
Anopheles , Insectos Vectores , Insecticidas , Ivermectina , Malaria/prevención & control , Control de Mosquitos , Animales , Resistencia a los Insecticidas , Nueva Orleans
14.
Malar J ; 13: 417, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25363349

RESUMEN

BACKGROUND: Mass drug administration (MDA) of ivermectin to humans for control and elimination of filarial parasites can kill biting malaria vectors and lead to Plasmodium transmission reduction. This study examines the degree and duration of mosquitocidal effects resulting from single MDAs conducted in three different West African countries, and the subsequent reductions in parity and Plasmodium sporozoite rates. METHODS: Indoor-resting, blood-fed and outdoor host-seeking Anopheles spp. were captured on days surrounding MDAs from 2008-2013 in Senegalese, Liberian and Burkinabé villages. Mortality was assessed on a portion of the indoor collection, and parity status was determined on host-seeking mosquitoes. The effect of MDA was then analysed against the time relative to the MDA, the distributed drugs and environmental variables. RESULTS: Anopheles gambiae survivorship was reduced by 33.9% for one week following MDA and parity rates were significantly reduced for more than two weeks after the MDAs. Sporozoite rates were significantly reduced by >77% for two weeks following the MDAs in treatment villages despite occurring in the middle of intense transmission seasons. These observed effects were consistent across three different West African transmission dynamics. CONCLUSIONS: These data provide a comprehensive and crucial evidence base for the significant reduction in malaria transmission following single ivermectin MDAs across diverse field sites. Despite the limited duration of transmission reduction, these results support the hypothesis that repeated MDAs with optimal timing could help sustainably control malaria as well as filarial transmission.


Asunto(s)
Anopheles/efectos de los fármacos , Antimaláricos/administración & dosificación , Insecticidas/administración & dosificación , Ivermectina/administración & dosificación , Malaria/prevención & control , África Occidental , Animales , Anopheles/fisiología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Femenino , Humanos , Insecticidas/farmacología , Insecticidas/uso terapéutico , Ivermectina/farmacología , Ivermectina/uso terapéutico , Malaria/tratamiento farmacológico , Malaria/transmisión , Paridad/efectos de los fármacos , Plasmodium/efectos de los fármacos , Esporozoítos/efectos de los fármacos
15.
J Med Entomol ; 51(1): 253-63, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24605476

RESUMEN

Currently, there exists a deficit of safe, active trapping methods for the collection of host-seeking Anopheles and other disease-causing arthropod vectors. The gold-standard approach for mosquito collection is that of human landing catch (HLC), in which an individual exposes bare skin to possibly infected vectors. Here, we present the development of a new method for mosquito collection, the Infoscitex tent, which uses modern tent materials coupled with a novel trap design. This provides an efficacious, a non-labor-intensive, and a safe method for vector collection. In these initial studies, we found it collected an average of 27.7 Anopheles gambiae s.l. per trap per night in rural villages in southeastern Senegal, and 43.8 Culex group Vper trap per night in the semiurban town of Kedougou, Senegal. In direct comparisons with HLC, the tent was not statistically different for collection of Culex quinquefasciatus in crepuscular sampling, but was significantly less efficacious at trapping the highly motile dusk-biter Aedes aegypti. These studies suggest that the Infoscitex tent is a viable and safe alternative to HLC for Anopheles and Culex sampling in areas of high vector-borne disease infection risk.


Asunto(s)
Vectores Artrópodos , Culicidae , Entomología/instrumentación , Control de Insectos/instrumentación , Animales , Entomología/métodos , Humanos , Hidrodinámica , Control de Insectos/métodos
16.
17.
Malar J ; 12: 153, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23647969

RESUMEN

BACKGROUND: The heterogeneity of malaria transmission makes widespread elimination a difficult goal to achieve. Most of the current vector control measures insufficiently target outdoor transmission. Also, insecticide resistance threatens to diminish the efficacy of the most prevalent measures, indoor residual spray and insecticide treated nets. Innovative approaches are needed. The use of endectocides, such as ivermectin, could be an important new addition to the toolbox of anti-malarial measures. Ivermectin effectively targets outdoor transmission, has a novel mechanism of action that could circumvent resistance and might be distributed over the channels already in place for the control of onchocerciasis and lymphatic filariasis. METHODS: The previous works involving ivermectin and Anopheles vectors are reviewed and summarized. A review of ivermectin's safety profile is also provided. Finally three definitive clinical trials are described in detail and proposed as the evidence needed for implementation. Several smaller and specific supportive studies are also proposed. CONCLUSIONS: The use of ivermectin solves many challenges identified for future vector control strategies. It is an effective and safe endectocide that was approved for human use more than 25 years ago. Recent studies suggest it might become an effective and complementary strategy in malaria elimination and eradication efforts; however, intensive research will be needed to make this a reality.


Asunto(s)
Anopheles/efectos de los fármacos , Antiparasitarios/provisión & distribución , Insecticidas/provisión & distribución , Ivermectina/provisión & distribución , Malaria/prevención & control , Malaria/transmisión , Control de Mosquitos/métodos , Animales , Antiparasitarios/farmacología , Ensayos Clínicos como Asunto , Humanos , Insecticidas/farmacología , Ivermectina/farmacología
18.
J Med Entomol ; 60(6): 1214-1220, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37862094

RESUMEN

Colorado tick fever virus is an understudied tick-borne virus of medical importance that is primarily transmitted in the western United States and southwestern Canada. The virus is the type species of the genus Coltivirus (Spinareoviridae) and consists of 12 segments that remain largely uncharacterized. Patterns of viral distribution are driven by the presence of the primary vector, the Rocky Mountain wood tick, Dermacentor andersoni. Infection prevalence in D. andersoni can range from 3% to 58% across the geographic distribution of the tick. Infection in humans can be severe and often presents with fever relapses but is rarely fatal. Here, we review the literature from primary characterizations in the early 20th century to current virus/vector research being conducted and identify vacancies in current research.


Asunto(s)
Virus de la Fiebre por Garrapatas del Colorado , Dermacentor , Humanos , Animales , Canadá
19.
Epidemics ; 44: 100697, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348378

RESUMEN

Ivermectin (IVM)-treated birds provide the potential for targeted control of Culex mosquitoes to reduce West Nile virus (WNV) transmission. Ingestion of IVM increases mosquito mortality, which could reduce WNV transmission from birds to humans and in enzootic maintenance cycles affecting predominantly bird-feeding mosquitoes and from birds to humans. This strategy might also provide an alternative method for WNV control that is less hampered by insecticide resistance and the logistics of large-scale pesticide applications. Through a combination of field studies and modeling, we assessed the feasibility and impact of deploying IVM-treated birdfeed in residential neighborhoods to reduce WNV transmission. We first tracked 105 birds using radio telemetry and radio frequency identification to monitor their feeder usage and locations of nocturnal roosts in relation to five feeder sites in a neighborhood in Fort Collins, Colorado. Using these results, we then modified a compartmental model of WNV transmission to account for the impact of IVM on mosquito mortality and spatial movement of birds and mosquitoes on the neighborhood level. We found that, while the number of treated lots in a neighborhood strongly influenced the total transmission potential, the arrangement of treated lots in a neighborhood had little effect. Increasing the proportion of treated birds, regardless of the WNV competency status, resulted in a larger reduction in infection dynamics than only treating competent birds. Taken together, model results indicate that deployment of IVM-treated feeders could reduce local transmission throughout the WNV season, including reducing the enzootic transmission prior to the onset of human infections, with high spatial coverage and rates of IVM-induced mortality in mosquitoes. To improve predictions, more work is needed to refine estimates of daily mosquito movement in urban areas and rates of IVM-induced mortality. Our results can guide future field trials of this control strategy.


Asunto(s)
Culex , Culicidae , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Fiebre del Nilo Occidental/prevención & control , Fiebre del Nilo Occidental/veterinaria , Ivermectina/farmacología , Ivermectina/uso terapéutico , Aves
20.
Front Cell Infect Microbiol ; 13: 1330600, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188633

RESUMEN

Mosquitoes are responsible for the transmission of numerous viruses of global health significance. The term "vector competence" describes the intrinsic ability of an arthropod vector to transmit an infectious agent. Prior to transmission, the mosquito itself presents a complex and hostile environment through which a virus must transit to ensure propagation and transmission to the next host. Viruses imbibed in an infectious blood meal must pass in and out of the mosquito midgut, traffic through the body cavity or hemocoel, invade the salivary glands, and be expelled with the saliva when the vector takes a subsequent blood meal. Viruses encounter physical, cellular, microbial, and immunological barriers, which are influenced by the genetic background of the mosquito vector as well as environmental conditions. Collectively, these factors place significant selective pressure on the virus that impact its evolution and transmission. Here, we provide an overview of the current state of the field in understanding the mosquito-specific factors that underpin vector competence and how each of these mechanisms may influence virus evolution.


Asunto(s)
Culicidae , Mosquitos Vectores , Animales , Vectores Artrópodos , Saliva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA