Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(4): 6597-6608, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439359

RESUMEN

High temporal resolution is essential for ultra-fast pump-probe experiments. Arrival time jitter and drift measurements, as well as their control, become critical especially when combining XUV or X-ray free-electron lasers (FELs) with optical lasers due to the large scale of such facilities and their distinct pulse generation processes. This paper presents the application of a laser pulse arrival time monitor that actively corrects the arrival time of an optical laser relative to the FEL's main optical clock. Combined with post-analysis single pulse jitter correction this new approach improves the temporal resolution for pump-probe experiments significantly. Benchmark measurements on photo-ionization of xenon atoms performed at FLASH beamline FL26, demonstrate a sub-50 fs FWHM overall temporal resolution.

2.
Phys Rev Lett ; 129(21): 213202, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36461977

RESUMEN

The control of low-energy electrons by carrier-envelope-phase-stable near-single-cycle THz pulses is demonstrated. A femtosecond laser pulse is used to create a temporally localized wave packet through multiphoton absorption at a well defined phase of a synchronized THz field. By recording the photoelectron momentum distributions as a function of the time delay, we observe signatures of various regimes of dynamics, ranging from recollision-free acceleration to coherent electron-ion scattering induced by the THz field. The measurements are confirmed by three-dimensional time-dependent Schrödinger equation simulations. A classical trajectory model allows us to identify scattering phenomena analogous to strong-field photoelectron holography and high-order above-threshold ionization.

3.
Chem Rev ; 120(20): 11295-11369, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33035051

RESUMEN

Interatomic or intermolecular Coulombic decay (ICD) is a nonlocal electronic decay mechanism occurring in weakly bound matter. In an ICD process, energy released by electronic relaxation of an excited atom or molecule leads to ionization of a neighboring one via Coulombic electron interactions. ICD has been predicted theoretically in the mid nineties of the last century, and its existence has been confirmed experimentally approximately ten years later. Since then, a number of fundamental and applied aspects have been studied in this quickly growing field of research. This review provides an introduction to ICD and draws the connection to related energy transfer and ionization processes. The theoretical approaches for the description of ICD as well as the experimental techniques developed and employed for its investigation are described. The existing body of literature on experimental and theoretical studies of ICD processes in different atomic and molecular systems is reviewed.

4.
Opt Express ; 28(14): 20686-20703, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32680123

RESUMEN

The THz-field-driven streak camera has proven to be a powerful diagnostic-technique that enables the shot-to-shot characterization of the duration and the arrival time jitter of free electron laser (FEL) pulses. Here we investigate the performance of three computational approaches capable to determine the duration of FEL pulses with complex temporal structures from single-shot measurements of up to three simultaneously recorded spectra. We use numerically simulated FEL pulses in order to validate the accuracy of the pulse length retrieval in average as well as in a single-shot mode. We discuss requirements for the THz field strength in order to achieve reliable results and compare our numerical study with the analysis of experimental data that were obtained at the FEL in Hamburg - FLASH.

5.
Sci Adv ; 9(47): eadk1482, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37992169

RESUMEN

The electronic and nuclear dynamics inside molecules are essential for chemical reactions, where different pathways typically unfold on ultrafast timescales. Extreme ultraviolet (XUV) light pulses generated by free-electron lasers (FELs) allow atomic-site and electronic-state selectivity, triggering specific molecular dynamics while providing femtosecond resolution. Yet, time-resolved experiments are either blind to neutral fragments or limited by the spectral bandwidth of FEL pulses. Here, we combine a broadband XUV probe pulse from high-order harmonic generation with an FEL pump pulse to observe dissociation pathways leading to fragments in different quantum states. We temporally resolve the dissociation of a specific O2+ state into two competing channels by measuring the resonances of ionic and neutral fragments. This scheme can be applied to investigate convoluted dynamics in larger molecules relevant to diverse science fields.

6.
Opt Express ; 19(20): 18833-41, 2011 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-21996826

RESUMEN

We report on transferring the concept of light-field streaking with intense terahertz fields from free-electron lasers to the laboratory scale. Utilizing a commercial laser system, synchronized 300 µm terahertz and 13 nm extreme ultraviolet pulses are generated by optical rectification and high harmonic generation, respectively. The terahertz fields are sufficiently strong to support electron wave packet sampling with a few fs resolution. The capability of this approach is demonstrated by measuring the duration of electron pulses formed by direct photoemission from a neon gas target.


Asunto(s)
Electrones , Rayos Láser , Modelos Teóricos , Aceleradores de Partículas/instrumentación , Dispersión de Radiación , Radiación Terahertz , Rayos Ultravioleta , Simulación por Computador , Diseño de Equipo , Fenómenos Ópticos
7.
Sci Rep ; 7: 40736, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28098175

RESUMEN

Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA