Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 40(7): 1722-1737, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32404007

RESUMEN

OBJECTIVE: Lymphatics play an essential pathophysiological role in promoting fluid and immune cell tissue clearance. Conversely, immune cells may influence lymphatic function and remodeling. Recently, cardiac lymphangiogenesis has been proposed as a therapeutic target to prevent heart failure after myocardial infarction (MI). We investigated the effects of gene therapy to modulate cardiac lymphangiogenesis post-MI in rodents. Second, we determined the impact of cardiac-infiltrating T cells on lymphatic remodeling in the heart. Approach and Results: Comparing adenoviral versus adeno-associated viral gene delivery in mice, we found that only sustained VEGF (vascular endothelial growth factor)-CC156S therapy, achieved by adeno-associated viral vectors, increased cardiac lymphangiogenesis, and led to reduced cardiac inflammation and dysfunction by 3 weeks post-MI. Conversely, inhibition of VEGF-C/-D signaling, through adeno-associated viral delivery of soluble VEGFR3 (vascular endothelial growth factor receptor 3), limited infarct lymphangiogenesis. Unexpectedly, this treatment improved cardiac function post-MI in both mice and rats, linked to reduced infarct thinning due to acute suppression of T-cell infiltration. Finally, using pharmacological, genetic, and antibody-mediated prevention of cardiac T-cell recruitment in mice, we discovered that both CD4+ and CD8+ T cells potently suppress, in part through interferon-γ, cardiac lymphangiogenesis post-MI. CONCLUSIONS: We show that resolution of cardiac inflammation after MI may be accelerated by therapeutic lymphangiogenesis based on adeno-associated viral gene delivery of VEGF-CC156S. Conversely, our work uncovers a major negative role of cardiac-recruited T cells on lymphatic remodeling. Our results give new insight into the interconnection between immune cells and lymphatics in orchestration of cardiac repair after injury.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Terapia Genética , Linfangiogénesis , Vasos Linfáticos/metabolismo , Infarto del Miocardio/terapia , Miocardio/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos , Interferón gamma/metabolismo , Vasos Linfáticos/inmunología , Vasos Linfáticos/fisiopatología , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Miocardio/inmunología , Miocardio/patología , Ratas Wistar , Recuperación de la Función , Transducción de Señal , Factores de Tiempo , Factor C de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Función Ventricular Izquierda
2.
Blood ; 120(25): 5073-83, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23065156

RESUMEN

Protein S is a vitamin K-dependent glycoprotein, which, besides its anticoagulant function, acts as an agonist for the tyrosine kinase receptors Tyro3, Axl, and Mer. The endothelium expresses Tyro3, Axl, and Mer and produces protein S. The interaction of protein S with endothelial cells and particularly its effects on angiogenesis have not yet been analyzed. Here we show that human protein S, at circulating concentrations, inhibited vascular endothelial growth factor (VEGF) receptor 2-dependent vascularization of Matrigel plugs in vivo and the capacity of endothelial cells to form capillary-like networks in vitro as well as VEGF-A-induced endothelial migration and proliferation. Furthermore, protein S inhibited VEGF-A-induced endothelial VEGFR2 phosphorylation and activation of mitogen-activated kinase-Erk1/2 and Akt. Protein S activated the tyrosine phosphatase SHP2, and the SHP2 inhibitor NSC 87877 reversed the observed inhibition of VEGF-A-induced endothelial proliferation. Using siRNA directed against Tyro3, Axl, and Mer, we demonstrate that protein S-mediated SHP2 activation and inhibition of VEGF-A-stimulated proliferation were mediated by Mer. Our report provides the first evidence for the existence of a protein S/Mer/SHP2 axis, which inhibits VEGFR2 signaling, regulates endothelial function, and points to a role for protein S as an endogenous angiogenesis inhibitor.


Asunto(s)
Inhibidores de la Angiogénesis/metabolismo , Neovascularización Fisiológica , Proteína S/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de la Angiogénesis/administración & dosificación , Animales , Proliferación Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Activación Enzimática , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Proteína S/administración & dosificación , Proteínas Proto-Oncogénicas/genética , ARN Interferente Pequeño/genética , Proteínas Tirosina Quinasas Receptoras/genética , Tirosina Quinasa c-Mer
3.
Nat Commun ; 14(1): 4461, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491334

RESUMEN

Epigenetic regulation of histone H3K27 methylation has recently emerged as a key step during alternative immunoregulatory M2-like macrophage polarization; known to impact cardiac repair after Myocardial Infarction (MI). We hypothesized that EZH2, responsible for H3K27 methylation, could act as an epigenetic checkpoint regulator during this process. We demonstrate for the first time an ectopic EZH2, and putative, cytoplasmic inactive localization of the epigenetic enzyme, during monocyte differentiation into M2 macrophages in vitro as well as in immunomodulatory cardiac macrophages in vivo in the post-MI acute inflammatory phase. Moreover, we show that pharmacological EZH2 inhibition, with GSK-343, resolves H3K27 methylation of bivalent gene promoters, thus enhancing their expression to promote human monocyte repair functions. In line with this protective effect, GSK-343 treatment accelerated cardiac inflammatory resolution preventing infarct expansion and subsequent cardiac dysfunction in female mice post-MI in vivo. In conclusion, our study reveals that pharmacological epigenetic modulation of cardiac-infiltrating immune cells may hold promise to limit adverse cardiac remodeling after MI.


Asunto(s)
Monocitos , Infarto del Miocardio , Animales , Femenino , Humanos , Ratones , Diferenciación Celular , Epigénesis Genética , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Monocitos/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo
4.
Cardiovasc Res ; 119(2): 492-505, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35689481

RESUMEN

AIMS: Lymphatics are essential for cardiac health, and insufficient lymphatic expansion (lymphangiogenesis) contributes to development of heart failure (HF) after myocardial infarction. However, the regulation and impact of lymphangiogenesis in non-ischaemic cardiomyopathy following pressure-overload remains to be determined. Here, we investigated cardiac lymphangiogenesis following transversal aortic constriction (TAC) in C57Bl/6 and Balb/c mice, and in end-stage HF patients. METHODS AND RESULTS: Cardiac function was evaluated by echocardiography, and cardiac hypertrophy, lymphatics, inflammation, oedema, and fibrosis by immunohistochemistry, flow cytometry, microgravimetry, and gene expression analysis. Treatment with neutralizing anti-VEGFR3 antibodies was applied to inhibit cardiac lymphangiogenesis in mice. We found that VEGFR3-signalling was essential to prevent cardiac lymphatic rarefaction after TAC in C57Bl/6 mice. While anti-VEGFR3-induced lymphatic rarefaction did not significantly aggravate myocardial oedema post-TAC, cardiac immune cell levels were increased, notably myeloid cells at 3 weeks and T lymphocytes at 8 weeks. Moreover, whereas inhibition of lymphangiogenesis did not aggravate interstitial fibrosis, it increased perivascular fibrosis and accelerated development of left ventricular (LV) dilation and dysfunction. In clinical HF samples, cardiac lymphatic density tended to increase, although lymphatic sizes decreased, notably in patients with dilated cardiomyopathy. Similarly, comparing C57Bl/6 and Balb/c mice, lymphatic remodelling post-TAC was linked to LV dilation rather than to hypertrophy. The striking lymphangiogenesis in Balb/c was associated with reduced cardiac levels of macrophages, B cells, and perivascular fibrosis at 8 weeks post-TAC, as compared with C57Bl/6 mice that displayed weak lymphangiogenesis. Surprisingly, however, it did not suffice to resolve myocardial oedema, nor prevent HF development. CONCLUSIONS: We demonstrate for the first time that endogenous lymphangiogenesis limits TAC-induced cardiac inflammation and perivascular fibrosis, delaying HF development in C57Bl/6 but not in Balb/c mice. While the functional impact of lymphatic remodelling remains to be determined in HF patients, our findings suggest that under settings of pressure-overload poor cardiac lymphangiogenesis may accelerate HF development.


Asunto(s)
Estenosis de la Válvula Aórtica , Insuficiencia Cardíaca , Ratones , Animales , Linfangiogénesis , Corazón , Insuficiencia Cardíaca/metabolismo , Edema , Fibrosis , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Remodelación Ventricular
5.
Front Med (Lausanne) ; 6: 240, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31737637

RESUMEN

Introduction: Protein Tyrosine Phosphatase 1B (PTP1B) and endoplasmic reticulum stress (ERS) are involved in the septic inflammatory response. Their inhibition is associated with improved survival in murine models of sepsis. The objective was to describe PTP1B and ERS expression during septic shock in human. Material and Methods: Prospective study including patients admitted to intensive care unit (ICU) for septic shock. Blood samples were collected on days 1 (D1), 3 and 5 (D5). Quantitative PCR (performed from whole blood) evaluated the expression of genes coding for PTP1B (PTPN1) and key elements of ERS (GRP78, ATF6, CHOP) or for endothelial dysfunction-related markers (ICAM1 and ET1). We analyzed gene variation between D5 and D1, collected glycemic parameters, insulin resistance and organ failure was evaluated by Sequential Organ Failure Assessment (SOFA) score. Results: We included 44 patients with a mean SAPS II 50 ± 16 and a mortality rate of 13.6%. Between D1 and D5, there was a significant decrease of PTPN1 (p < 0.001) and ATF6 (p < 0.001) expressions. Their variations of expression were correlated with SOFA variation (PTPN1, r = 0.35, CI 95% [0.05; 0.54], p = 0.03 and ATF6, r = 0.45 CI 95% [0.20; 0.65], p < 0.001). We did not find any correlation between PTPN1 expression and insulin resistance or glycemic parameters. Between D1 and D5, ATF6 and PTPN1 expressions were correlated with that of ET1. Conclusions: Our study has evaluated for the first time the expression of PTP1B and ERS in patients with septic shock, revealing that gene expression variation of PTPN1 and ATF6 are partly correlated with the evolution of septic organ failure and with endothelial dysfunction markers expression.

6.
J Med Chem ; 62(18): 8443-8460, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31436984

RESUMEN

The emerging pharmacological target soluble epoxide hydrolase (sEH) is a bifunctional enzyme exhibiting two different catalytic activities that are located in two distinct domains. Although the physiological role of the C-terminal hydrolase domain is well-investigated, little is known about its phosphatase activity, located in the N-terminal phosphatase domain of sEH (sEH-P). Herein we report the discovery and optimization of the first inhibitor of human and rat sEH-P that is applicable in vivo. X-ray structure analysis of the sEH phosphatase domain complexed with an inhibitor provides insights in the molecular basis of small-molecule sEH-P inhibition and helps to rationalize the structure-activity relationships. 4-(4-(3,4-Dichlorophenyl)-5-phenyloxazol-2-yl)butanoic acid (22b, SWE101) has an excellent pharmacokinetic and pharmacodynamic profile in rats and enables the investigation of the physiological and pathophysiological role of sEH-P in vivo.


Asunto(s)
Inhibidores Enzimáticos/química , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/química , Animales , Sitios de Unión , Dominio Catalítico , Diseño de Fármacos , Humanos , Ligandos , Masculino , Oxazoles/química , Monoéster Fosfórico Hidrolasas/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Temperatura
7.
Stem Cell Reports ; 9(5): 1573-1587, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29033304

RESUMEN

Human endothelial colony-forming cells (ECFCs) represent a promising source of adult stem cells for vascular repair, yet their regenerative capacity is limited. Here, we set out to understand the molecular mechanism restricting the repair function of ECFCs. We found that key pro-angiogenic pathways are repressed in ECFCs due to the presence of bivalent (H3K27me3/H3K4me3) epigenetic marks, which decreases the cells' regenerative potential. Importantly, ex vivo treatment with a combination of epigenetic drugs that resolves bivalent marks toward the transcriptionally active H3K4me3 state leads to the simultaneous activation of multiple pro-angiogenic signaling pathways (VEGFR, CXCR4, WNT, NOTCH, SHH). This in turn results in improved capacity of ECFCs to form capillary-like networks in vitro and in vivo. Furthermore, restoration of perfusion is accelerated upon transplantation of drug-treated ECFCs in a model of hindlimb ischemia. Thus, ex vivo treatment with epigenetic drugs increases the vascular repair properties of ECFCs through transient activation of pro-angiogenic signaling pathways.


Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Epigénesis Genética , Neovascularización Fisiológica , Transducción de Señal , Animales , Células Cultivadas , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/trasplante , Femenino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Miembro Posterior/irrigación sanguínea , Humanos , Isquemia/terapia , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Trasplante de Células Madre , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
8.
Stem Cell Rev Rep ; 12(2): 235-44, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26649729

RESUMEN

PURPOSE: The role of bone marrow-derived mesenchymal stem/stromal cells (MSCs) in creating a permissive microenvironment that supports the emergence and progression of acute myeloid leukemia (AML) is not well established. We investigated the extent to which adipogenic differentiation in normal MSCs alters hematopoietic supportive capacity and we undertook an in-depth comparative study of human bone marrow MSCs derived from newly diagnosed AML patients and healthy donors, including an assessment of adipogenic differentiation capacity. FINDINGS: MSCs from healthy controls with partial induction of adipogenic differentiation, in comparison to MSCs undergoing partial osteogenic differentiation, expressed increased levels of hematopoietic factors and induced greater proliferation, decreased quiescence and reduced in vitro hematopoietic colony forming capacity of CD34(+) hematopoietic stem and progenitor cells (HSPCs). Moreover, we observed that AML-derived MSCs had markedly increased adipogenic potential and delayed osteogenic differentiation, while maintaining normal morphology and viability. AML-derived MSCs, however, possessed reduced proliferative capacity and decreased frequency of subendothelial quiescent MSCs compared to controls. CONCLUSION: Our results support the notion of a bone marrow microenvironment characterized by increased propensity toward adipogenesis in AML, which may negatively impact normal hematopoiesis. Larger confirmatory studies are needed to understand the impact of various clinical factors. Novel leukemia treatments aimed at normalizing bone marrow niches may enhance the competitive advantage of normal hematopoietic progenitors over leukemia cells.


Asunto(s)
Adipogénesis/fisiología , Células de la Médula Ósea/fisiología , Hematopoyesis/fisiología , Leucemia Mieloide Aguda/patología , Células Madre Mesenquimatosas/fisiología , Nicho de Células Madre/fisiología , Adulto , Anciano , Médula Ósea/fisiología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Femenino , Células Madre Hematopoyéticas , Humanos , Masculino , Persona de Mediana Edad
9.
FEBS J ; 282(9): 1605-29, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25546332

RESUMEN

Maintenance of vascular integrity is essential for the prevention of vascular disease and for recovery following cardiovascular, cerebrovascular and peripheral vascular events including limb ischemia, heart attack and stroke. Endothelial stem/progenitor cells have recently gained considerable interest due to their potential use in stem cell therapies to mediate revascularization after ischemic injury. Therefore, there is an urgent need to understand fundamental mechanisms regulating vascular repair in specific cell types to develop new beneficial therapeutic interventions. In this review, we highlight recent studies demonstrating that epigenetic mechanisms (including post-translational modifications of DNA and histones as well as non-coding RNA-mediated processes) play essential roles in the regulation of endothelial stem/progenitor cell functions through modifying chromatin structure. Furthermore, we discuss the potential of using small molecules that modulate the activities of epigenetic enzymes to enhance the vascular repair function of endothelial cells and offer insight on potential strategies that may accelerate clinical applications.


Asunto(s)
Vasos Sanguíneos/citología , Endotelio Vascular/citología , Epigénesis Genética , Metilación de ADN , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Células Madre/citología , Transcripción Genética
10.
Cell Stem Cell ; 14(5): 644-57, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24792117

RESUMEN

A major goal of cell therapy for vascular diseases is to promote revascularization through the injection of endothelial stem/progenitor cells. The gene regulatory mechanisms that underlie endothelial progenitor-mediated vascular repair, however, remain elusive. Here, we identify the transcription factor TAL1/SCL as a key mediator of the vascular repair function of primary human endothelial colony-forming cells (ECFCs). Genome-wide analyses in ECFCs demonstrate that TAL1 activates a transcriptional program that promotes cell adhesion and migration. At the mechanistic level, we show that TAL1 upregulates the expression of migratory and adhesion genes through recruitment of the histone acetyltransferase p300. Based on these findings, we establish a strategy that enhances the revascularization efficiency of ECFCs after ischemia through ex vivo priming with the histone deacetylase inhibitor TSA. Thus, small molecule epigenetics drugs are effective tools for modifying the epigenome of stem/progenitor cells prior to transplantation as a means to enhance their therapeutic potential.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Ácidos Hidroxámicos/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Inmunoprecipitación de Cromatina , Células Progenitoras Endoteliales/citología , Epigénesis Genética/genética , Estudio de Asociación del Genoma Completo , Humanos , Proteínas Proto-Oncogénicas/genética , Proteína 1 de la Leucemia Linfocítica T Aguda
11.
Leuk Res ; 37(8): 948-55, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23726264

RESUMEN

Cytarabine combined with an anthracycline or an anthracenedione represents the usual intensive induction therapy for the treatment of AML. However, this protocol induces severe side effects and treatment-related mortality due to the lack of selectivity of these cytotoxic agents. In this paper, we present the study of the first galactosidase-responsive molecular "Trojan Horse" programmed for the delivery of doxorubicin exclusively inside AML blasts over-expressing the folate receptor (FR). This targeting system allows the selective killing of AML blasts without affecting normal endothelial, cardiac or hematologic cells from healthy donors suggesting that FDC could reduce adverse events usually recorded with anthracyclines.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Células Madre Neoplásicas/efectos de los fármacos , beta-Galactosidasa/metabolismo , Enfermedad Aguda , Adulto , Anciano , Anciano de 80 o más Años , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Crisis Blástica/tratamiento farmacológico , Crisis Blástica/metabolismo , Crisis Blástica/patología , Línea Celular Tumoral , Células Cultivadas , Relación Dosis-Respuesta a Droga , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Sistemas de Liberación de Medicamentos/métodos , Femenino , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Receptor 2 de Folato/genética , Receptor 2 de Folato/metabolismo , Ácido Fólico/química , Células HEK293 , Células HL-60 , Humanos , Leucemia Mieloide/tratamiento farmacológico , Leucemia Mieloide/genética , Leucemia Mieloide/patología , Masculino , Persona de Mediana Edad , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA