Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 745: 109714, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37549802

RESUMEN

RNA is a fundamental nucleic acid for life and it plays important roles in the regulation of gene transcription, post-transcriptional regulation, and epigenetic regulation. Recently, the focus on this nucleic acid has significantly increased due to the development of mRNA vaccines and RNA-based gene therapy protocols. Unfortunately, RNA based products show constrains mainly owing to instability and easy degradability of the RNA molecules. Indeed, unlike the DNA molecule which has a great intrinsic stability, RNA is more prone to degradation and this process is accelerated under thermal treatment. Here we describe a method that involves the use of Natural Deep Eutectic Solvents (NaDES) capable of slowing down RNA degradation process. Our results show that this technology seems suitable for improving the stability of specific RNA molecules particularly susceptible to thermal-induced degradation. Therefore, this technique represents a valuable tool to stabilize RNA molecules used in gene therapy and mRNA vaccines.


Asunto(s)
Disolventes Eutécticos Profundos , ARN , Solventes , Epigénesis Genética , Extractos Vegetales
2.
J Org Chem ; 88(21): 15097-15105, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37862264

RESUMEN

Dibenzocyclooctynes have emerged as promising scaffolds for bioorthogonal ligation. An important structural aspect that has not been addressed so far relates to their chirality. Herein, we explore, by theoretical and experimental methods, this structural aspect that has been neglected so far. First, computational analysis is conducted, and the results are used as a guide for the experimental investigation. Next, an array of different experiments (high-performance liquid chromatography (HPLC) on chiral columns, chiroptical spectroscopy, and X-ray diffraction) for structure elucidation is scrutinized in concert. Finally, this work demonstrates the chirality and the stereodynamic behavior of dibenzocyclooctynes and their triazole derivatives with simple azides and also uncovers their conformational behavior.

3.
Radiol Med ; 128(5): 601-611, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37027091

RESUMEN

CT urography is a single term used to refer to different scanning protocols that can be applied for a number of clinical indications. If, on the one hand, this highlights the role of the radiologist in deciding the most suitable technique to perform according to the patient's needs, on the other hand, a certain confusion may arise due to the different technical and clinical variables that have to be taken into account. This has been well demonstrated by a previous work based on an online questionnaire administered to a population of Italian radiologists that brought out similarities as well as differences across the national country. Defining precise guidelines for each clinical scenario, although desirable, is a difficult task to accomplish, if not even unfeasible. According to the prementioned survey, five relevant topics concerning CT urography have been identified: definition and clinical indications, opacification of the excretory system, techniques, post-processing reconstructions, and radiation dose and utility of dual-energy CT. The aim of this work is to deepen and share knowledge about these main points in order to assist the radiology in the daily practice. Moreover, a synopsis of recommendations agreed by the Italian board of genitourinary imaging is provided.


Asunto(s)
Radiología , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Urografía/métodos
4.
J Neurochem ; 162(4): 322-336, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35699375

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder whose main pathological hallmark is the accumulation of Amyloid-ß peptide (Aß) in the form of senile plaques. Aß can cause neurodegeneration and disrupt cognitive functions by several mechanisms, including oxidative stress. ERp57 is a protein disulfide isomerase involved in the cellular stress response and known to be present in the cerebrospinal fluid of normal individuals as a complex with Aß peptides, suggesting that it may be a carrier protein which prevents aggregation of Aß. Although several studies show ERp57 involvement in neurodegenerative diseases, no clear mechanism of action has been identified thus far. In this work, we gain insights into the interaction of Aß with ERp57, with a special focus on the contribution of ERp57 to the defense system of the cell. Here, we show that recombinant ERp57 directly interacts with the Aß25-35 fragment in vitro with high affinity via two in silico-predicted main sites of interaction. Furthermore, we used human neuroblastoma cells to show that short-term Aß25-35 treatment induces ERp57 decrease in intracellular protein levels, different intracellular localization, and ERp57 secretion in the cultured medium. Finally, we demonstrate that recombinant ERp57 counteracts the toxic effects of Aß25-35 and restores cellular viability, by preventing Aß25-35 aggregation. Overall, the present study shows that extracellular ERp57 can exert a protective effect from Aß toxicity and highlights it as a possible therapeutic tool in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Neuronas , Fragmentos de Péptidos , Proteína Disulfuro Isomerasas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Humanos , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Proteína Disulfuro Isomerasas/metabolismo
5.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077573

RESUMEN

Erythrocytes' aging and mechano-transduction are fundamental cellular pathways that determine the red blood cells' (RBCs) behavior and function. The aging pattern can be influenced, in morphological, biochemical, and metabolic terms by the environmental conditions. In this paper, we studied the effect of a moderate mechanical stimulation applied through external shaking during the RBCs aging and revealed a strong acceleration of the aging pattern induced by such stimulation. Moreover, we evaluated the behavior of the main cellular effectors and resources in the presence of drugs (diamide) or of specific inhibitors of the mechano-transduction (probenecid, carbenoxolone, and glibenclamide). This approach provided the first evidence of a direct cross-correlation between aging and mechano-transduction and permitted an evaluation of the overall metabolic regulation and of the insurgence of specific morphological features, such as micro-vesicles and roughness alterations. Overall, for the first time the present data provided a schematic to understand the integration of distinct complex patterns in a comprehensive view of the cell and of its interactions with the environment. Mechano-transduction produces structural effects that are correlated with the stimulation and the strength of the environmental stimulation is paramount to effectively activate and trigger the biological cascades initiated by the mechano-sensing.


Asunto(s)
Senescencia Celular , Eritrocitos , Eritrocitos/fisiología , Humanos
6.
Molecules ; 27(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35408747

RESUMEN

trans-Resveratrol is a natural bioactive compound with well-recognized health promoting effects. When exposed to UV light, this compound can undergo a photochemically induced trans/cis isomerization and a 6π electrochemical cyclization with the subsequent formation of 2,4,6-trihydroxyphenanthrene (THP). THP is a potentially harmful compound which can exert genotoxic effects. In this work we improved the chromatographic separation and determination of the two resveratrol isomers and of THP by using a non-commercial pentafluorophenyl stationary phase. We assessed the effect of natural deep eutectic solvents (NaDES) as possible photo-protective agents by evaluating cis-resveratrol isomer and THP formation under different UV-light exposure conditions with the aim of enhancing resveratrol photostability and inhibiting THP production. Our results demonstrate a marked photoprotective effect exerted by glycerol-containing NaDES, and in particular by proline/glycerol NaDES, which exerts a strong inhibitory effect on the photochemical isomerization of resveratrol and significantly limits the formation of the toxic derivative THP. Considering the presence of resveratrol in various commercial products, these results are of note in view of the potential genotoxic risk associated with its photochemical degradation products and in view of the need for the development of green, eco-sustainable and biocompatible resveratrol photo-stable formulations.


Asunto(s)
Disolventes Eutécticos Profundos , Glicerol , Isomerismo , Fenantrenos , Resveratrol/química , Resveratrol/farmacología , Solventes/química
7.
Amino Acids ; 53(10): 1559-1568, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34536129

RESUMEN

S-adenosyl-L-methionine (SAM), the main endogenous methyl donor, is the adenosyl derivative of the amino acid methionine, which displays many important roles in cellular metabolism. It is widely used as a food supplement and in some countries is also marketed as a drug. Its interesting nutraceutical and pharmacological properties prompted us to evaluate the pharmacokinetics of a new form of SAM, the phytate salt. The product was administered orally to rats and pharmacokinetic parameters were evaluated by comparing the results with that obtained by administering the SAM tosylated form (SAM PTS). It was found that phytate anion protects SAM from degradation, probably because of steric hindrance exerted by the counterion, and that the SAM phytate displayed significant better pharmacokinetic parameters compared to SAM PTS. These results open to the perspective of the use of new salts of SAM endowed with better pharmacokinetic properties.


Asunto(s)
S-Adenosilmetionina/química , S-Adenosilmetionina/farmacocinética , Administración Oral , Animales , Área Bajo la Curva , Disponibilidad Biológica , Estabilidad de Medicamentos , Femenino , Masculino , Ácido Fítico/química , Ratas Sprague-Dawley , S-Adenosilmetionina/administración & dosificación , S-Adenosilmetionina/sangre
8.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35008693

RESUMEN

Pheomelanin is a natural yellow-reddish sulfur-containing pigment derived from tyrosinase-catalyzed oxidation of tyrosine in presence of cysteine. Generally, the formation of melanin pigments is a protective response against the damaging effects of UV radiation in skin. However, pheomelanin, like other photosensitizing substances, can trigger, following exposure to UV radiation, photochemical reactions capable of modifying and damaging cellular components. The photoproperties of this natural pigment have been studied by analyzing pheomelanin effect on oxidation/nitration of tyrosine induced by UVB radiation at different pH values and in presence of iron ions. Photoproperties of pheomelanin can be modulated by various experimental conditions, ranging from the photoprotection to the triggering of potentially damaging photochemical reactions. The study of the photomodification of l-Tyrosine in the presence of the natural pigment pheomelanin has a special relevance, since this tyrosine oxidation/nitration pathway can potentially occur in vivo in tissues exposed to sunlight and play a role in the mechanisms of tissue damage induced by UV radiation.


Asunto(s)
Melaninas/metabolismo , Tirosina/metabolismo , Rayos Ultravioleta , Hierro/metabolismo , Melaninas/biosíntesis , Melaninas/química , Nitritos/metabolismo , Nitrosación/efectos de la radiación , Oxidación-Reducción/efectos de la radiación , Ácido Peroxinitroso/metabolismo , Oxígeno Singlete/metabolismo
9.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899395

RESUMEN

Graphene oxide (GO) derivatives are reported as a valid alternative to conventional carriers of therapeutic agents, because they have a large surface area, an excellent electrical and thermal conductivity and a great capacity for selective binding of drugs and therapeutics, due to the functionalization of their surfaces, edges and sides. In this work GO nanosheets, synthesized by electrochemical exfoliation of graphite (patent N 102015000023739, Tor Vergata University), were investigated as possible carriers of an anticancer drug, the S29, an inhibitor of a cytoplasmic tyrosine kinase (c-SRC) on a neuroblastoma cell line (SK N BE 2 cells). Neuroblastoma is a heterogenous tumor whose characteristics range from spontaneous regression to aggressive phenotypes that are due to different mutations that often occur in SRC family kinases. Inhibitors of tyrosine kinases are currently investigated for their anti-tumoral effects on aggressive neuroblastomas, but their uptake in cells and pharmacokinetics needs to be improved. In this work S29 was stably conjugated with highly water-dispersible GO nanoparticles. S29/GO complex formation was induced by 1h sonication and its stability was analyzed by chromatography coupled with spectrophotometry and mass spectrometry. The synthesized composite (GO-S29) was delivered into SK N BE 2 cells and its effects on cell viability, production of reactive oxygen species (ROS) and migration were studied. The results show that the compound GO-S29 exerts anti-tumoral effects on the neuroblastoma cell line, higher than both GO and S29 do alone and that GO has an additive effect on S29.


Asunto(s)
Aminas/química , Antineoplásicos/farmacología , Grafito/química , Nanopartículas/química , Neuroblastoma/tratamiento farmacológico , Antineoplásicos/química , Ciclo Celular , Supervivencia Celular , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas
10.
Molecules ; 25(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825684

RESUMEN

Anthocyanins are a class of water-soluble flavonoids widely present in fruits and vegetables. Dietary sources of anthocyanins include red and purple berries, grapes, apples, plums, cabbage, or foods containing high levels of natural colorants. Cyanidin, delphinidin, malvidin, peonidin, petunidin, and pelargonidin are the six common anthocyanidins. Following consumption, anthocyanin, absorption occurs along the gastrointestinal tract, the distal lower bowel being the place where most of the absorption and metabolism occurs. In the intestine, anthocyanins first undergo extensive microbial catabolism followed by absorption and human phase II metabolism. This produces hybrid microbial-human metabolites which are absorbed and subsequently increase the bioavailability of anthocyanins. Health benefits of anthocyanins have been widely described, especially in the prevention of diseases associated with oxidative stress, such as cardiovascular and neurodegenerative diseases. Furthermore, recent evidence suggests that health-promoting effects attributed to anthocyanins may also be related to modulation of gut microbiota. In this paper we attempt to provide a comprehensive view of the state-of-the-art literature on anthocyanins, summarizing recent findings on their chemistry, biosynthesis, nutritional value and on their effects on human health.


Asunto(s)
Antocianinas/química , Antocianinas/uso terapéutico , Enfermedades Cardiovasculares/prevención & control , Enfermedades Neurodegenerativas/prevención & control , Animales , Humanos
11.
Molecules ; 25(16)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796621

RESUMEN

Extra virgin olive oil (EVOO) phenols represent a significant part of the intake of antioxidants and bioactive compounds in the Mediterranean diet. In particular, hydroxytyrosol (HTyr), tyrosol (Tyr), and the secoiridoids oleacein and oleocanthal play central roles as anti-inflammatory, neuro-protective and anti-cancer agents. These compounds cannot be easily obtained via chemical synthesis, and their isolation and purification from EVOO is cumbersome. Indeed, both processes involve the use of large volumes of organic solvents, hazardous reagents and several chromatographic steps. In this work we propose a novel optimized procedure for the green extraction, isolation and purification of HTyr, Tyr, oleacein and oleocanthal directly from EVOO, by using a Natural Deep Eutectic Solvent (NaDES) as an extracting phase, coupled with preparative high-performance liquid chromatography. This purification method allows the total recovery of the four components as single pure compounds directly from EVOO, in a rapid, economic and ecologically sustainable way, which utilizes biocompatible reagents and strongly limits the use or generation of hazardous substances.


Asunto(s)
Aldehídos/aislamiento & purificación , Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión/métodos , Monoterpenos Ciclopentánicos/aislamiento & purificación , Aceite de Oliva/química , Fenoles/aislamiento & purificación , Alcohol Feniletílico/análogos & derivados , Extractos Vegetales/aislamiento & purificación , Alcohol Feniletílico/aislamiento & purificación
12.
Molecules ; 25(4)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093407

RESUMEN

The ß-amyloid (Aß) peptide plays a key role in the pathogenesis of Alzheimer's disease. The methionine (Met) residue at position 35 in Aß C-terminal domain is critical for neurotoxicity, aggregation, and free radical formation initiated by the peptide. The role of Met in modulating toxicological properties of Aß most likely involves an oxidative event at the sulfur atom. We therefore investigated the one- or two-electron oxidation of the Met residue of Aß25-35 fragment and the effect of such oxidation on the behavior of the peptide. Bicarbonate promotes two-electron oxidations mediated by hydrogen peroxide after generation of peroxymonocarbonate (HCO4-, PMC). The bicarbonate/carbon dioxide pair stimulates one-electron oxidations mediated by carbonate radical anion (CO3•-). PMC efficiently oxidizes thioether sulfur of the Met residue to sulfoxide. Interestingly, such oxidation hampers the tendency of Aß to aggregate. Conversely, CO3•- causes the one-electron oxidation of methionine residue to sulfur radical cation (MetS•+). The formation of this transient reactive intermediate during Aß oxidation may play an important role in the process underlying amyloid neurotoxicity and free radical generation.


Asunto(s)
Péptidos beta-Amiloides/química , Carbonatos/química , Radicales Libres/química , Fragmentos de Péptidos/química , Agregado de Proteínas , Humanos , Oxidación-Reducción
13.
Adv Exp Med Biol ; 1155: 755-771, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31468446

RESUMEN

In the last decade thiotaurine, 2-aminoethane thiosulfonate, has been investigated as an inflammatory modulating agent as a result of its ability to release hydrogen sulfide (H2S) known to play regulatory roles in inflammation. Thiotaurine can be included in the "taurine family" due to structural similarity to taurine and hypotaurine, and is characterized by the presence of a sulfane sulfur moiety. Thiotaurine can be produced by different pathways, such as the spontaneous transsulfuration between thiocysteine - a persulfide analogue of cysteine - and hypotaurine as well as in vivo from cystine. Moreover, the enzymatic oxidation of cysteamine to hypotaurine and thiotaurine in the presence of inorganic sulfur can occur in animal tissues and last but not least thiotaurine can be generated by the transfer of sulfur from mercaptopyruvate to hypotaurine catalyzed by a sulfurtransferase. Thiotaurine is an effective antioxidant agent as demonstrated by its ability to counteract the damage caused by pro-oxidants in the rat. Recently, we observed the influence of thiotaurine on human neutrophils functional responses. In particular, thiotaurine has been found to prevent human neutrophil spontaneous apoptosis suggesting an alternative or additional role to its antioxidant activity. It is likely that the sulfane sulfur of thiotaurine may modulate neutrophil activation via persulfidation of target proteins. In conclusion, thiotaurine can represent a biologically relevant sulfur donor acting as a biological intermediate in the transport, storage and release of sulfide.


Asunto(s)
Sulfuro de Hidrógeno , Taurina/análogos & derivados , Animales , Antioxidantes/farmacología , Apoptosis , Humanos , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Ratas , Transducción de Señal , Sulfuros , Taurina/fisiología
14.
Int J Mol Sci ; 20(3)2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30736391

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder and the primary form of dementia in the elderly. One of the main features of AD is the increase in amyloid-beta (Aß) peptide production and aggregation, leading to oxidative stress, neuroinflammation and neurodegeneration. Polyphenols are well known for their antioxidant, anti-inflammatory and neuroprotective effects and have been proposed as possible therapeutic agents against AD. Here, we investigated the effects of a polyphenolic extract of Arabidopsis thaliana (a plant belonging to the Brassicaceae family) on inflammatory response induced by Aß. BV2 murine microglia cells treated with both Aß25⁻35 peptide and extract showed a lower pro-inflammatory (IL-6, IL-1ß, TNF-α) and a higher anti-inflammatory (IL-4, IL-10, IL-13) cytokine production compared to cells treated with Aß only. The activation of the Nrf2-antioxidant response element signaling pathway in treated cells resulted in the upregulation of heme oxygenase-1 mRNA and in an increase of NAD(P)H:quinone oxidoreductase 1 activity. To establish whether the extract is also effective against Aß-induced neurotoxicity in vivo, we evaluated its effect on the impaired climbing ability of AD Drosophila flies expressing human Aß1⁻42. Arabidopsis extract significantly restored the locomotor activity of these flies, thus confirming its neuroprotective effects also in vivo. These results point to a protective effect of the Arabidopsis extract in AD, and prompt its use as a model in studying the impact of complex mixtures derived from plant-based food on neurodegenerative diseases.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Arabidopsis/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química , Polifenoles/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Locomoción/efectos de los fármacos , Espectrometría de Masas , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fitoquímicos/química , Transporte de Proteínas
15.
Molecules ; 24(15)2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390787

RESUMEN

Phyllanthus orbicularis (Phyllanthaceae) is an endemic evergreen tropical plant of Cuba that grows in the western part of the island and is used in traditional medicine as an infusion. The aqueous extract of this plant presents a wide range of pharmacological activitiessuch as antimutagenic, antioxidant and antiviral effects. Given the many beneficial effects and the great interest in the development of new pharmacological products from natural sources, the aim of this work was to investigate the phytochemistry of this species and to elucidate the structure of the main bioactive principles. Besides the presence of several known polyphenols, the major constituent was hitherto not described. The chemical structure of this compound, here named Fideloside, was elucidated by means of HR-ESIMS/MSn, 1D/2D NMR, FT-IR, and ECD as (2R,3R)-(-)-3',4',5,7-tetrahydroxydihydroflavonol-8-C-ß-D-glucopyranoside. The compound, as well as the plant aqueous preparations, showed promising bioactive properties, i.e., anti-inflammatory capacity in human explanted monocytes, corroborating future pharmacological use for this new natural C-glycosyl flavanonol.


Asunto(s)
Phyllanthus/química , Fitoquímicos/química , Extractos Vegetales/química , Plantas Medicinales/química , Cromatografía Líquida de Alta Presión , Citocinas/metabolismo , Flavonoides/química , Flavonoides/farmacología , Humanos , Modelos Moleculares , Estructura Molecular , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Análisis Espectral
16.
Respiration ; 95 Suppl 1: 22-29, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29705783

RESUMEN

Cardiovascular (CV) comorbidities in patients with chronic obstructive pulmonary disease (COPD) are associated with increased morbidity and mortality, especially in old and very old subjects. The question if long-acting beta-agonist and long-acting muscarinic antagonist could be associated with the increased prevalence of CV-related adverse effects has puzzled, particularly in the past, specialists involved in the management of respiratory diseases. The safety of these compounds has scarcely been tested in patients aged ≥ 65 years with CV comorbidities, since randomized controlled trials rarely include this subpopulation. However, the fixed combination indacaterol/glycopyrronium has shown a favorable CV safety profile in both healthy volunteers and COPD patients. Thus, we aimed to assess the CV safety pro-- file of the fixed combination indacaterol/glycopyrronium 110/50 µg in a series of COPD patients aged ≥ 80 years with several comorbidities. Our results indicate that this combination is safe in the comorbid elderly, since no significant electrocardiographic abnormalities were recorded after the administration of the inhaled therapy. Only rare and nonclinically significant changes in heart rate and corrected QT interval duration were evident, mainly in females and in patients with concomitant impaired kidney function.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/efectos adversos , Enfermedades Cardiovasculares/inducido químicamente , Glicopirrolato/efectos adversos , Indanos/efectos adversos , Antagonistas Muscarínicos/efectos adversos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Quinolonas/efectos adversos , Administración por Inhalación , Anciano de 80 o más Años , Quimioterapia Combinada , Electrocardiografía , Femenino , Humanos , Masculino
17.
Adv Exp Med Biol ; 975 Pt 1: 551-561, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28849481

RESUMEN

Copper-zinc superoxide dismutase (SOD) is considered one of the most important mammalian antioxidant defenses and plays a relevant role due to its main function in catalyzing the dismutation of superoxide anion to oxygen and hydrogen peroxide. However, interaction between SOD and H2O2 produced a strong copper-bound oxidant (Cu(II)•OH) that seems able to contrast the self-inactivation of the enzyme or oxidize other molecules through its peroxidase activity. The bicarbonate presence enhances the peroxidase activity and produces the carbonate anion radical (CO3•-). CO3•- is a freely diffusible reactive species capable of oxidizing several molecules that are unwieldy to access into the reactive site of the enzyme. Cu(II)•OH oxidizes bicarbonate to the CO3•-, which spreads out of the binding site and oxidizes hypotaurine and cysteine sulfinic acid to the respective sulfonates through an efficient reaction. These findings suggest a defense role for sulfinates against the damage caused by CO3•- . The effect of hypotaurine and cysteine sulfinic acid on the CO3•--mediated oxidation of the peroxidase probe ABTS to ABTS cation radical (ABTS•+) has been studied. Both sulfinates are able to inhibit the oxidation of ABTS mediated by CO3•-. The effect of hypotaurine and cysteine sulfinic acid against SOD inactivation by H2O2 (~42% protection of enzyme activity) has also been investigated. Interestingly, hypotaurine and cysteine sulfinic acid partially avoid the H2O2-mediated SOD inactivation, suggesting that the two sulfinates may have access to the SOD reactive site and preserve it by reacting with the copper-bound oxidant. In this way hypotaurine and cysteine sulfinic acid not only intercept CO3•- which could move out from the reactive site and cause oxidative damage, but also prevents the inactivation of SOD.


Asunto(s)
Cisteína/análogos & derivados , Depuradores de Radicales Libres/farmacología , Radicales Libres/metabolismo , Superóxido Dismutasa-1/metabolismo , Taurina/análogos & derivados , Animales , Antioxidantes/farmacología , Carbonatos/metabolismo , Bovinos , Cisteína/farmacología , Oxidación-Reducción/efectos de los fármacos , Taurina/farmacología
18.
Adv Exp Med Biol ; 975 Pt 1: 535-549, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28849480

RESUMEN

There is an increasing interest for analytical methods aimed to detect biological sulfur-containing amines, because of their involvement in human diseases and metabolic disorders. This work describes an improved HPLC method for the determination of sulfur containing amino acids and amines from different biological matrices. We optimized a pre-column derivatization procedure using dabsyl chloride, in which dabsylated products can be monitored spectrophotometrically at 460 nm. This method allows the simultaneous analysis of biogenic amines, amino acids and sulfo-amino compounds including carnosine, dopamine, epinephrine, glutathione, cysteine, taurine, lanthionine, and cystathionine in brain specimens, urines, plasma, and cell lysates. Moreover, the method is suitable for the study of physiological and non-physiological derivatives of taurine and glutathione such as hypotaurine, homotaurine, homocysteic acid and S-acetylglutathione. The present method displays good efficiency of derivatization, having the advantage to give rise to stable products compared to other derivatizing agents such as o-phthalaldehyde and dansyl chloride.With this method, we provide a tool to study sulfur cycle from a metabolic point of view in relation to the pattern of biological amino-compounds, allowing researchers to get a complete scenario of organic sulfur and amino metabolism in tissues and cells.


Asunto(s)
Aminoácidos/análisis , Aminas Biogénicas/análisis , Cromatografía Líquida de Alta Presión/métodos , Compuestos de Azufre/análisis , Animales , Humanos , Ratones
19.
Int J Mol Sci ; 18(5)2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28467361

RESUMEN

A resveratrol/carboxymethylated glucan (CM-glucan) combination is known to inhibit rhinovirus replication and expression of inflammatory mediators in nasal epithelia. The aim of this study was to develop an aerosol formulation containing an association of the two molecules which could reach the lower respiratory tract. Mass median aerodynamic diameter (MMAD) of a resveratrol/CM-glucan combination was lower than that shown by resveratrol or CM-glucan alone (2.83 versus 3.28 and 2.96 µm, respectively). The resveratrol/CM-glucan association results in the finest and most monodispersed particles in comparison to the two single components. The association also evidenced lower values for all particle size distribution parameters, suggesting that the pharmacological synergy observed in previous studies may be accompanied by a pharmaceutical one. Moreover, we showed that the CM-glucan matrix did not exert an inhibitory effect on resveratrol nebulization, demonstrating the good suitability of these two molecules in association for simultaneous aerosol volatilization.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antivirales/química , Antivirales/farmacología , Estilbenos/química , Estilbenos/farmacología , beta-Glucanos/química , Aerosoles , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Mucosa Nasal , Nebulizadores y Vaporizadores , Tamaño de la Partícula , Resveratrol , Rhinovirus/efectos de los fármacos , Volatilización
20.
Int J Mol Sci ; 18(9)2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961650

RESUMEN

Resveratrol stability in solution can be improved by combining the polyphenol with carboxymethylated (1,3/1,6)-ß-d-glucan (CM-glucan), a carbohydrate polymer widely used in the food and pharmaceutical industries. The present work was undertaken to elucidate the mechanism behind this stabilizing effect. The supramolecular structural, physico-chemical and morphological features of the CM-glucan/resveratrol complex have been studied under different physical and chemical stimuli by means of spectroscopic techniques, microscopy and physical methods such as UV-Visible spectroscopy (UV-Vis), spectrofluorimetry, Circular Dichroism (CD), Infrared spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Our experimental data indicate that CM-glucan conformational organized architecture in aqueous solution is enhanced in the presence of resveratrol, suggesting that the polyphenol is able to confer a high degree of order to the polymer by a probable cooperative structural organization that results in a long term stabilization for the polyphenol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA