Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Divers ; 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38145425

RESUMEN

Breast cancer, a highly prevalent and fatal cancer that affects the female population worldwide, stands as a significant health challenge. Despite the abundance of chemotherapy drugs, the adverse side effects associated with them have initiated an investigation into natural plant-based compounds. Trigonelline, an alkaloid found in Trigonella foenum-graecum, was previously reported for its anticancer properties by the researchers. In this present study, we have identified the molecular targets of Trigonelline in breast cancer and predicted its drug-like properties and toxicity. By analyzing breast cancer targets from databases including TTD, TCGA, Gene cards, and Trigonelline targets obtained from CTD, we identified 14 specific targets of Trigonelline in the context of breast cancer. The protein-protein interaction (PPI) network of the 14 Trigonelline targets provided insights into the complex relationships between different genes and targets. Heatmap analysis demonstrated the expression patterns of these 14 genes at the protein and RNA levels in breast cancer cells and breast tissues. Notably, four genes, namely EGF, BAX, EGFR, and MTOR, were enriched in the breast cancer pathway. At the same time, PARP1, DDIT3, BAX, and TNF were associated with the apoptosis pathway according to KEGG pathway enrichment analyses. Molecular docking studies between Trigonelline and target proteins from the Protein Data Bank (PDB) revealed favorable binding affinity. Furthermore, mutation analysis of target genes within a dataset of 1918 samples from cBioPortal revealed the absence of mutations. Remarkably, Trigonelline also exhibited binding affinity towards two mutant proteins, and based on these findings, we predicted that Trigonelline could be utilized to target breast cancer genes and their mutants through network pharmacology. Additionally, this was supported by molecular dynamic simulation studies. As our study is preliminary, further validation through in vitro and in vivo studies is essential to confirm the efficacy of Trigonelline in breast cancer treatment.

2.
Rev Environ Contam Toxicol ; 259: 51-76, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34611755

RESUMEN

Graphene possesses wider biomedical applications including drug delivery, photothermal ablation of tumors, biosensors, and also in the disease diagnosis. The accidental or intentional exposure of the environment including plants, ecosystem, and humans toward graphene is gradually increasing. Therefore, graphene toxicity becomes a critical issue to be addressed despite their diverse applications in multiple fields. In this situation, the scientific community as well as the general public must get awareness about the toxicity of graphene. This article, therefore, reviews the investigations on graphene toxicity. This review reveals the toxicity of graphene in vitro, in vivo models along with the environmental toxicity. The advantages of graphene toxicity in bacterial cells and cancer cells were also reviewed.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanoestructuras , Sistemas de Liberación de Medicamentos , Ecosistema , Grafito/toxicidad , Humanos
3.
Mol Biol Rep ; 48(8): 6065-6074, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34355287

RESUMEN

BACKGROUND: Laryngeal carcinoma, the most common among head and neck squamous cell carcinoma (HNSCC), induces 1% of all cancer deaths. Curcumin the active constituent of turmeric, is shown to be effective in the treatment of various cancers. In the present study, we explored the mechanistic role of bis-demethoxy curcumin analog (BDMC-A) as a chemotherapeutic agent. We investigated its inhibitory effect on invasion, angiogenesis, and metastasis in human laryngeal carcinoma (Hep-2) cells in comparison with curcumin. METHODS: The effect of curcumin and BDMC-A on transcription factors (NF-κB, p65, c-Jun, c-Fos, STAT3, 5, PPAR-γ, ß-catenin, COX-2, MMP-9, VEGF, TIMP-2) involved in signal transduction cascade, invasion, and angiogenesis in Hep-2 cells were quantified using Western blotting and RT-PCR technique. ELISA was used to measure the pro-inflammatory markers in Hep-2 cells treated with curcumin and BDMC-A. RESULTS: The results showed that BDMC-A inhibits the transcription factors NF-κB, p65, c-Jun, c-Fos, STAT3, STAT5, PPAR-γ and ß-catenin, which are responsible for tumor progression and malignancy. Moreover, BDMC-A treatment downregulated MMP-9, VEGF, TGF- ß, IL-6 and IL-8 and upregulated TIMP-2 levels. The effects were more significant compared to curcumin. CONCLUSION: Our overall results revealed that BDMC-A more effectively inhibited the markers of invasion, angiogenesis and metastasis in comparison with curcumin.


Asunto(s)
Curcumina/análogos & derivados , Curcumina/farmacología , Neoplasias Laríngeas/tratamiento farmacológico , Antineoplásicos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Curcuma/metabolismo , Curcumina/síntesis química , Células Hep G2 , Humanos , Neoplasias Laríngeas/metabolismo , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Invasividad Neoplásica/genética , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Nanomedicine ; 14(6): 1809-1822, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29777877

RESUMEN

Human beings and ecosystems are being possibly exposed to CNTs, as there is a rise in global production rate of carbon nanotubes (CNTs). This may affect the health of humans and increases the environmental risk. We have already reported the pulmonary toxicity due to the inhalation of MWCNTs. We claim that a compound with anti-inflammatory and antioxidant activity may ameliorate the CNT-induced toxic effect. With this view, we have investigated the ameliorative effect of intravenously-administered nano bis-demethoxy curcumin analog (NBDMCA) against MWCNTs-induced inhalation toxicity by examining the lung histopathology for inflammatory cell dynamics, pulmonary remodeling and estimating the inflammatory biomarkers in the broncho-alveolar lavage fluid. We observed that NBDMCA could ameliorate the injury as evidenced by the decline in the levels of markers of inflammation, cell damage, and the histopathological changes induced by MWCNTs. We conclude that NBDMCA may be used to reduce the risk of MWCNTs-induced inhalation toxicity.


Asunto(s)
Antineoplásicos/farmacología , Curcumina/análogos & derivados , Nanotubos de Carbono/toxicidad , Neumonía/prevención & control , Administración por Inhalación , Animales , Antineoplásicos/administración & dosificación , Curcumina/administración & dosificación , Curcumina/farmacología , Citocinas/metabolismo , Diarilheptanoides , Masculino , Estrés Oxidativo/efectos de los fármacos , Neumonía/inducido químicamente , Neumonía/patología , Ratas , Ratas Wistar
5.
Toxicol Ind Health ; 34(3): 200-210, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29506458

RESUMEN

Carbon nanotubes (CNTs) are widely used in the aerospace, automotive, and electronics industries because of their stability, enhanced metallic, and electrical properties. CNTs are also being investigated for biomedical applications such as drug delivery systems and biosensors. However, the toxic potential of CNTs was reported in various cell lines and animal models. The toxicity depends on diverse properties of the CNTs, such as length, aspect ratio, surface area, degree of aggregation, purity, concentration, and dose. In addition, CNTs and/or associated contaminants were well known for oxidative stress, inflammation, apoptosis, pulmonary inflammation, fibrosis, and granuloma in lungs. The increased production of CNTs likely enhanced the possibility of its exposure in people. Studies on the toxicity of CNTs are mainly focused on the pulmonary effects after intratracheal administration, and only a few studies are reported about the toxicity of CNTs via other routes of exposure. So, it is essential to consider the chronic toxicity of CNTs before using them for various biomedical applications. This review focuses on the potential toxicities of CNTs.


Asunto(s)
Pulmón/efectos de los fármacos , Nanotubos de Carbono/efectos adversos , Animales , Sistema Cardiovascular/efectos de los fármacos , Genitales/efectos de los fármacos , Humanos , Inflamación/inducido químicamente , Lesión Pulmonar/inducido químicamente , Ratones , Modelos Animales , Estrés Oxidativo/efectos de los fármacos , Ratas , Tensoactivos/toxicidad
6.
J Nanosci Nanotechnol ; 16(1): 1186-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27398584

RESUMEN

Intravenous route is the best strategy to accomplish fastest and highest delivery of drugs. Hydrophobic drugs like curcumin and its analog exhibit disadvantages like low bioavailability, poor absorption and rapid precipitation on intravenous delivery, all leading to its poor therapeutic value. These can be by-passed by enhancing the dispersity, stability and decreasing the size of the drug by nanotization. Thus, with an intention to deliver bis-demethoxy curcumin analog via intravenous route, we have studied the effect of DMSO, ethanol and acetone on the size, size distribution, stability and yield and identified the best solvent in terms of smallest size, narrow size distribution, more stability and high yield of nano bis-demethoxy curcumin analog (NBDMCA). NBDMCA prepared using DMSO showed the lowest mean particle size cum polydispersity index and highest zeta potential when compared to ethanol and acetone. Hence the DMSO based formulation can provide prolonged action and better efficacy at minimal doses. Thus, the DMSO based NBDMCA can emerge as an ideal therapeutic tool for human use.


Asunto(s)
Curcumina/análogos & derivados , Curcumina/química , Sistemas de Liberación de Medicamentos/métodos , Administración Intravenosa , Curcumina/farmacocinética , Curcumina/farmacología , Estabilidad de Medicamentos , Humanos
7.
J Nanosci Nanotechnol ; 14(7): 4865-73, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24757955

RESUMEN

We have optimized a protocol for the preparation of bisdemethoxy curcumin analog nanoparticles (BDMCA-NP) by the solvent assisted process. The structural similarities between bulk and nano BDMCA were determined by Co-TLC, NMR and F-TIR. This shows that our synthesis protocol enhanced the dispersibility and reduce the size of BDMCA without altering the integrity of functional moieties and structure, which is crucial for anticancer and antioxidant activities. The morphology and size of BDMCA-NP as determined by SEM, HRTEM and DLS was found to be around 80 nm. BDMCA-NP treated breast cancer cell lines (MCF 7) showed cell death as characterized by MTT assay. Flow cytometric analysis of BDMCA-NP treated MCF 7 cell lines showed an increase of cell count in G2/M phase indicates the cell cycle arrest. Western blot analysis revealed the presence of caspase 3, caspase 9, cleaved fragments of PARP and Bax proteins in the BDMCA-NP treated MCF 7 cell lines, but not in untreated cell lines. To recap, we have prepared BDMCA-NP by solvent assisted process, which exerted anticancer activity against breast cancer cells, which may be due to (i) enhanced dispersibility and surface: volume ratio, (ii) apoptosis (iii) mitochondrial pathway induced cell death, (iv) G2/M phase cell cycle arrest and (v) disassembly of mitotic spindle of the cancer cells. Thus, nano BDMCA can be used as a potent anticancer agent.


Asunto(s)
Curcumina/análogos & derivados , Composición de Medicamentos/métodos , Nanopartículas/administración & dosificación , Nanopartículas/química , Neoplasias Experimentales/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Chlorocebus aethiops , Cristalización/métodos , Curcumina/administración & dosificación , Curcumina/síntesis química , Diarilheptanoides , Difusión , Humanos , Células MCF-7 , Nanopartículas/ultraestructura , Neoplasias Experimentales/patología , Tamaño de la Partícula , Propiedades de Superficie , Resultado del Tratamiento , Células Vero
8.
Artículo en Inglés | MEDLINE | ID: mdl-38231067

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer lacking specific receptors, with dysregulated and overactivated Hedgehog (Hh) and mTOR/PI3K/AKT signaling pathways as potential therapeutic targets. OBJECTIVE: This study aimed to identify potential inhibitors among 53 alkaloids derived from 9 marine bryozoans using in silico approaches. It sought to analyze their impact on key signaling targets and their potential for future experimental validation. METHODS: In this research, selected targets were evaluated for protein-protein interactions, coexpression survival, and expression profiles. The protein expression was validated through the Human Protein Atlas (HPA) database and druggability through DGIdb. Online web servers were employed to assess drug-likeness, physiochemical properties, pharmacokinetics, and toxicological characteristics of the compounds. Molecular docking and dynamic simulations were carried out for ligand-protein interactions. Common Pharmacophore features, bioavailability, bioactivity, and biological activity spectrum (BAS) were also analyzed. RESULTS: Out of the 13 compounds studied, 10 displayed strong binding affinity with binding energies ranging from >-6.5 to <-8 Kcal/mol across all targets. Molecular dynamics simulations provided insights into Amathamide E's stability and conformational changes. Pharmacophore modeling revealed common features in 14 compounds potentially responsible for their biological activity. CONCLUSION: Our findings indicate the potential of marine-derived compounds as TNBC inhibitors. Further in vitro and in vivo validation is necessary to establish their effectiveness and explore their role as novel anti-TNBC agents.

9.
Pharmaceutics ; 16(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38931884

RESUMEN

Natural compounds such as polyphenols play several positive roles in maintaining the oxidative and inflammatory capacity of cells, which leads to their potential use as anticancer therapeutics. There is promising evidence for the in vitro and in vivo anticancer activity of many polyphenols, including resveratrol and quercetin, specifically in the treatment of colorectal cancer (CRC). There is a clear association between resveratrol and quercetin in interfering with the mechanistic pathways involved in CRC, such as Wnt, P13K/AKT, caspase-3, MAPK, NF-κB, etc. These molecular pathways establish the role of resveratrol and quercetin in controlling cancer cell growth, inducing apoptosis, and inhibiting metastasis. The major bottleneck in the progression of the use of resveratrol and quercetin as anticancer therapeutics is their reduced bioavailability in vivo because of their rapid metabolism in humans. Recent advancements in various nanotechnological formulations are promising for overcoming these bioavailability issues. Various nanoformulations of resveratrol and quercetin have shown an optimistic impact on reducing the solubility and improving the stability of resveratrol and quercetin in vivo. A combinatorial approach using nanoformulations of resveratrol with quercetin could potentially increase the impact of resveratrol in controlling CRC cell proliferation. This review discusses the mechanism of resveratrol and quercetin, the two bioactive polyphenolics, in colon cancer, with an emphasis on various types of nanoformulations of the two molecules targeting colon cancer. It also explores the synergistic effect of combining resveratrol and quercetin in various nanoformulations, targeting colon cancer. This research delves into the enhanced pharmacokinetics and potential chemotherapeutic benefits of these bioactive polyphenolics when used together in innovative ways.

10.
Drug Deliv Transl Res ; 13(9): 2239-2253, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36971997

RESUMEN

Drug development and testing are a tedious and expensive process with a high degree of uncertainty in the clinical success and preclinical validation of manufactured therapeutic agents. Currently, to understand the drug action, disease mechanism, and drug testing, most therapeutic drug manufacturers use 2D cell culture models to validate the drug action. However, there are many uncertainties and limitations with the conventional use of 2D (monolayer) cell culture models for drug testing that are primarily attributed due to poor mimicking of cellular mechanisms, disturbance in environmental interaction, and changes in structural morphology. To overcome such odds and difficulties in the preclinical validation of therapeutic medications, newer in vivo drug testing cell culture models with higher screening efficiencies are required. One such promising and advanced cell culture model reported recently is the "three-dimensional cell culture model." The 3D cell culture models are reported to show evident benefits over conventional 2D cell models. This review article outlines and describes the current advancement in cell culture models, their types, significance in high-throughput screening, limitations, applications in drug toxicity screening, and preclinical testing methodologies to predict in vivo efficacy.


Asunto(s)
Técnicas de Cultivo de Célula , Ensayos Analíticos de Alto Rendimiento , Evaluación Preclínica de Medicamentos/métodos , Técnicas de Cultivo de Célula/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Técnicas de Cultivo Tridimensional de Células , Desarrollo de Medicamentos
11.
Artículo en Inglés | MEDLINE | ID: mdl-37710065

RESUMEN

Carbon nanotubes (CNTs) exposure in human beings through inhalation may affect pulmonary organs and extrapulmonary organs including liver, kidney, brain, spleen, etc. The toxic effects developed as the result of CNTs exposure made us to explore the beneficial effect of nano bis-demethoxy curcumin analog (NBDMCA) towards multi-walled carbon nanotubes (MWCNTs)-induced toxicity in extrapulmonary organs. The current study described the ameliorative effect of NBDMCA against the toxic effects developed by inhaled MWCNTs in the extrapulmonary organs. The rats are exposed to the fixed aerosol concentration of 5 mg/m3 maintained in inhalation exposure chambers MWCNTs for 15 days as per OECD guidelines. After the exposure with MWCNTs, the animals were treated with NBDMCA (5 mg/kg body weight) with different dose frequencies, i.e., 2 doses per week for 1, 2, and 4 weeks. After treatment duration, the blood was drawn from retro-orbital vein and subjected to biochemical and cytokine analysis. Further the animals were euthanized, and the sample tissues were collected and performed oxidative stress and histopathology. The study results revealed that the intravenous administration of NBDMCA suppresses the extrapulmonary toxicity induced by MWCNTs, i.e., annulling the clinical changes and oxidative stress in various extrapulmonary organs at low doses of NBDMCA, evidenced its antioxidant efficacy. Moreover, use of increased doses provides better reduction in toxic symptoms with negligible side effects confirming the dose-dependent efficacy of NBDMCA. Overall, we suggested that NBDMCA may materialize into an effective compound for the reduction of MWCNTs-induced toxicity.

12.
Nat Prod Res ; : 1-15, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37436772

RESUMEN

Globally, cancer is the second leading cause of cancer-related death. Conventional and advanced treatments currently used for cancer are known for adverse effects and are expensive. Therefore, the search for alternative medicines is necessary. Homeopathy is one of the common complementary and alternative medicine used worldwide for treating and managing various cancers, as it has negligible side effects. However, only a few homeopathic drugs have been validated using various cancer cell lines and animal models. Over the last two decades, an increasing number of validated and reported homeopathic remedies have been developed. Despite the diluted remedies of homeopathic medicine making it controversial clinically, it was found to be more significant as an adjunct therapy for cancer treatment. Hence we aimed to review and summarize the research studies carried out on homeopathic remedies to explore the possible molecular mechanism behind its mode of action against cancer and its effectiveness.

13.
Cureus ; 15(8): e44209, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37767269

RESUMEN

INTRODUCTION: Oral inflammation, often triggered by infections, injuries, or immune responses, can compromise treatment outcomes, delay healing, and contribute to patient discomfort. The development of green nanoparticle synthesis methods is receiving attention due to their potential advantages over existing approaches. These procedures use commonly available, affordable, and environmentally friendly natural plant extracts. Due to their numerous uses in various industries, titanium oxide nanoparticles (TiO2NPs) have attracted the most attention among the nanoparticles. In this study, we present the green synthesis of Myristica fragrans (mace) extract as a reductant and stabilizer for the production of curcumin-functionalized TiO2NPs (CTN). We additionally evaluated the effectiveness of these nanoparticles as anti-inflammatory agents. OBJECTIVE: In this study, we aim to develop biogenic TiO2NPs using Myristica fragrans as a natural capping agent and functionalized with curcumin for effectively managing oral inflammation in dental applications. METHODS: The nanoparticles were synthesized using the green synthesis method and characterized using various characterization techniques. Biocompatibility was evaluated using hemolytic assays, and the bioactivity of the nanoparticles was assessed using anti-inflammatory assays. RESULTS: Curcumin-coated M-TiO2NPs (MCTN) were successfully synthesized and characterized by various techniques, confirming their morphology, crystallinity, functionalization, elemental composition, size, and stability. In vitro bioactivity studies revealed that MCTN exhibited significant anti-inflammatory activity, as evidenced by the inhibition of protein denaturation with minimal hemolytic potential. These findings highlight the potential of MCTN as a promising candidate for anti-inflammatory applications. CONCLUSION: Our results suggest that MCTN exhibits promising anti-inflammatory and anti-hemolytic properties. However, further in-depth in vivo analysis is required to fully understand their efficacy and toxicity.

14.
Cureus ; 15(10): e48000, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38034159

RESUMEN

Background Metastatic colorectal cancer (mCRC) continues to rank as the second deadliest cancer on the global scale. CRC diagnosed at metastatic (stage IV) makes treatment strategies more challenging. Even though there are numerous therapeutic options available, the side effects of these treatments threaten the human health. Therefore, we are in the phase of searching new molecules that are less harmful and cost-effective. The common source of many pharmaceutical medications is plants. This study focuses on virtually screening phytochemicals from Conium maculatum as potential inhibitors of the epidermal growth factor receptor (EGFR), a crucial target in cancer therapy. Methods and materials C. maculatum was selected due to its phytochemicals and prior indications of its anticancer properties. In silico investigations encompass druglikeness screening, pharmacokinetics assessment, molecular docking, toxicity prediction, molecular target screening, and molecular dynamics simulations. A comprehensive analysis led to the identification of promising lead compounds. Results A total of 25 compounds exhibited favorable pharmacokinetic and drug-like characteristics. Among them, 12 compounds displayed a high affinity for EGFR as determined by molecular docking experiments. Further safety assessment using ProTox-II revealed that seven compounds had no anticipated toxicity, affirming their safety profiles.  Conclusion These findings collectively predicted the efficacy of seven phytochemicals from C. maculatum as EGFR inhibitors in mCRC. Further experimental investigations and optimization of the identified leads were needed to validate the efficacy and safety of identified lead compounds and explore their therapeutic potential in CRC.

15.
Cureus ; 15(12): e50863, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38259388

RESUMEN

Introduction Cancer continues to pose a significant challenge in medical research. Phytochemicals derived from plants have emerged as a promising avenue for pioneering drug discovery due to their potential for reduced toxicity. The phosphatidylinositol 3-kinase (PI3K) pathway has gained recognition as a pivotal signaling pathway with implications across multiple facets of cancer initiation and progression. This study focuses on the virtual screening of phytochemicals from Schinus molle, evaluating their potential as inhibitors of PI3K, a crucial target in cancer therapy. Methods and materials The present study involved a comprehensive in silico screening of phytochemicals derived from S. molle. The screening process encompassed various parameters, such as drug-likeness, pharmacokinetics, molecular docking, toxicity analysis, bioavailability assessment, and molecular target exploration. The primary objective of this systematic approach was to identify potential lead compounds. The study aimed to provide a detailed understanding of the molecular properties of the phytochemicals and their potential as drug candidates. Results Upon analyzing 18 compounds, two compounds were noteworthy. Beta-spathulene and kaempferol demonstrated significant affinity for PI3K and favorable attributes concerning drug-likeness, pharmacokinetics, and bioavailability. Conclusion While our computational investigation lays a promising foundation, it is essential to emphasize that further experimental studies, including in vitro and in vivo experiments, are imperative to validate the action of these lead compounds.

16.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36986480

RESUMEN

A pharmaceutical formulation with favorable pharmacokinetic parameters is more likely to be efficacious and safe to overcome the failures of the drug resulting from lack of efficacy, poor bioavailability, and toxicity. In this view, we aimed to evaluate the pharmacokinetic functionalities and safety margin of an optimized CS-SS nanoformulation (F40) by in vitro/in vivo methods. The everted sac technique was used to evaluate the improved absorption of a simvastatin formulation. In vitro protein binding in bovine serum and mice plasma was performed. The formulation's liver and intestinal CYP3A4 activity and metabolic pathways were investigated by the qRT-PCR technique. The excretion of cholesterol and bile acids was measured to demonstrate the formulation's cholesterol depletion effect. Safety margins were determined by histopathology as well as fiber typing studies. In vitro protein binding results revealed the existence of a high percentage of free drugs (22.31 ± 3.1%, 18.20 ± 1.9%, and 16.9 ± 2.2%, respectively) compared to the standard formulation. The controlled metabolism in the liver was demonstrated from CYP3A4 activity. The formulation showed enhanced PK parameters in rabbits such as a lower Cmax, clearance, and a higher Tmax, AUC, Vd, and t1/2. qRT-PCR screening further proved the different metabolic pathways followed by simvastatin (SREBP-2) and chitosan (PPAR-γ pathway) in the formulation. The results from qRT-PCR and histopathology confirmed the toxicity level. Hence, this pharmacokinetic profile of the nanoformulation proved it has a unique synergistic hypolipidemic modality.

17.
Pharmaceutics ; 15(7)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37514105

RESUMEN

Acyclovir (ACV) is a promising candidate for drug repurposing because of its potential to provide an effective treatment for viral infections and non-viral diseases, such as cancer, for which limited treatment options exist. However, its poor physicochemical properties limit its application. This study aimed to formulate and evaluate an ACV-loaded red clay nanodrug delivery system exhibiting an effective cytotoxicity. The study focused on the preparation of a complex between ACV and red clay (RC) using sucrose stearate (SS) (nanocomplex F1) as an immediate-release drug-delivery system for melanoma treatment. The synthesized nanocomplex, which had nanosized dimensions, a negative zeta potential and the drug release of approximately 85% after 3 h, was found to be promising. Characterization techniques, including FT-IR, XRD and DSC-TGA, confirmed the effective encapsulation of ACV within the nanocomplex and its stability due to intercalation. Cytotoxicity experiments conducted on melanoma cancer cell lines SK-MEL-3 revealed that the ACV release from the nanocomplex formulation F1 effectively inhibited the growth of melanoma cancer cells, with an IC50 of 25 ± 0.09 µg/mL. Additionally, ACV demonstrated a significant cytotoxicity at approximately 20 µg/mL in the melanoma cancer cell line, indicating its potential repurposing for skin cancer treatment. Based on these findings, it can be suggested that the RC-SS complex could be an effective drug delivery carrier for localized cancer therapy. Furthermore, the results of an in silico study suggested the addition of chitosan to the formulation for a more effective drug delivery. Energy and interaction analyses using various modules in a material studio demonstrated the high stability of the composite comprising red clay, sucrose stearate, chitosan and ACV. Thus, it could be concluded that the utilization of the red clay-based drug delivery system is a promising strategy to improve the effectiveness of targeted cancer therapy.

18.
Mol Neurobiol ; 59(9): 5902-5924, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35831555

RESUMEN

Neural cell adhesion molecule, an integrated molecule of immunoglobulin protein superfamily involved in cell-cell adhesion, undergoes various structural modifications through numerous temporal-spatial regulations that generously alter their expressions on cell surfaces. These varied expression patterns are mostly envisioned in the morphogenesis and innervations of different human organs and systems. The considerable role of NCAM in neurite growth, brain development and etc. and its altered expression of NCAM in proliferating tumour cells and metastasis of various human melanomas clearly substantiate its appropriateness as a cell surface marker for diagnosis and potential target for several therapeutic moieties. This characteristic behaviour of NCAM is confined to its novel biochemistry, structural properties, signalling interactions and polysialylation. In particular, the characteristic expressions of NCAM are mainly attributed by its polysialylation, a post-translational modification that attaches polysialyl groups to the NCAM. The altered expression of NCAM on cell surface develops curiosity amidst pharmaceutical scientists, which drives them to understand its role of such expressions in various human melanomas and to elucidate the promising therapeutic strategies that are currently available to target NCAM appositely. Therefore, this review article is articulated with an insight on the altered expressions of NCAM, the clinical significances and the consequences of such atypical expression patterns in various human organs and systems.


Asunto(s)
Melanoma , Moléculas de Adhesión de Célula Nerviosa , Adhesión Celular , Sistemas de Liberación de Medicamentos , Humanos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Procesamiento Proteico-Postraduccional
19.
Front Oncol ; 12: 891673, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646714

RESUMEN

Replicating the naturalistic biomechanical milieu of cells is a primary requisite to uncover the fundamental life processes. The native milieu is significantly not replicated in the two-dimensional (2D) cell cultures. Alternatively, the current three-dimensional (3D) culture techniques can replicate the properties of extracellular matrix (ECM), though the recreation of the original microenvironment is challenging. The organization of cells in a 3D manner contributes to better insight about the tumorigenesis mechanism of the in vitro cancer models. Gene expression studies are susceptible to alterations in their microenvironment. Physiological interactions among neighboring cells also contribute to gene expression, which is highly replicable with minor modifications in 3D cultures. 3D cell culture provides a useful platform for identifying the biological characteristics of tumor cells, particularly in the drug sensitivity area of translational medicine. It promises to be a bridge between traditional 2D culture and animal experiments and is of great importance for further research in tumor biology. The new imaging technology and the implementation of standard protocols can address the barriers interfering with the live cell observation in a natural 3D physiological environment.

20.
Front Pharmacol ; 13: 902207, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846997

RESUMEN

The present work investigates a blend of jack fruit mucilage (JFM) and okra mucilage (OKM) as promising mucoadhesive carriers for colon-specific delivery of a curcumin (CMN)-loaded mucoadhesive tablet (CMT) formulation. Formulation optimization was performed using central composite design (CCD) to further decipher the effect of varying proportions of the mucoadhesive carriers JFM and OKG on response factors such as drug release (% DR) and mucoadhesive strength (MA). The optimized formulation CMT (F14) demonstrated a favorable 54.35% in vitro release of CMN in 12 h with release kinetics resulting from a zero-order anomalous diffusion mechanism and MA of 34.1733 ± 1.26 g. Accelerated stability testing of CMT (F14) confirmed a shelf life of about 4.7 years. In vivo drug targeting studies performed using rabbit models in order to observe transit behavior (colon-specific delivery) of the dosage form were assessed by fluoroscopic images of the GI tract. Taking the results together, the results confirm that the combination of JFM and OKM could be exploited as an ideal mucoadhesive carrier for effective delivery of macromolecules to the colon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA