Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(3): 996-1010, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37724593

RESUMEN

Grey matter heterotopia (GMH) are neurodevelopmental disorders associated with abnormal cortical function and epilepsy. Subcortical band heterotopia (SBH) and periventricular nodular heterotopia (PVNH) are two well-recognized GMH subtypes in which neurons are misplaced, either forming nodules lining the ventricles in PVNH, or forming bands in the white matter in SBH. Although both PVNH and SBH are commonly associated with epilepsy, it is unclear whether these two GMH subtypes differ in terms of pathological consequences or, on the contrary, share common altered mechanisms. Here, we studied two robust preclinical models of SBH and PVNH, and performed a systematic comparative assessment of the physiological and morphological diversity of heterotopia neurons, as well as the dynamics of epileptiform activity and input connectivity. We uncovered a complex set of altered properties, including both common and distinct physiological and morphological features across heterotopia subtypes, and associated with specific dynamics of epileptiform activity. Taken together, these results suggest that pro-epileptic circuits in GMH are, at least in part, composed of neurons with distinct, subtype-specific, physiological and morphological properties depending on the heterotopia subtype. Our work supports the notion that GMH represent a complex set of disorders, associating both shared and diverging pathological consequences, and contributing to forming epileptogenic networks with specific properties. A deeper understanding of these properties may help to refine current GMH classification schemes by identifying morpho-electric signatures of GMH subtypes, to potentially inform new treatment strategies.


Asunto(s)
Vermis Cerebeloso , Epilepsia , Trastornos del Neurodesarrollo , Humanos , Sustancia Gris , Neuronas
2.
Hum Mol Genet ; 31(6): 942-957, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-34635911

RESUMEN

Human cerebral cortical malformations are associated with progenitor proliferation and neuronal migration abnormalities. Progenitor cells include apical radial glia, intermediate progenitors and basal (or outer) radial glia (bRGs or oRGs). bRGs are few in number in lissencephalic species (e.g. the mouse) but abundant in gyrencephalic brains. The LIS1 gene coding for a dynein regulator, is mutated in human lissencephaly, associated also in some cases with microcephaly. LIS1 was shown to be important during cell division and neuronal migration. Here, we generated bRG-like cells in the mouse embryonic brain, investigating the role of Lis1 in their formation. This was achieved by in utero electroporation of a hominoid-specific gene TBC1D3 (coding for a RAB-GAP protein) at mouse embryonic day (E) 14.5. We first confirmed that TBC1D3 expression in wild-type (WT) brain generates numerous Pax6+ bRG-like cells that are basally localized. Second, using the same approach, we assessed the formation of these cells in heterozygote Lis1 mutant brains. Our novel results show that Lis1 depletion in the forebrain from E9.5 prevented subsequent TBC1D3-induced bRG-like cell amplification. Indeed, we observe perturbation of the ventricular zone (VZ) in the mutant. Lis1 depletion altered adhesion proteins and mitotic spindle orientations at the ventricular surface and increased the proportion of abventricular mitoses. Progenitor outcome could not be further altered by TBC1D3. We conclude that disruption of Lis1/LIS1 dosage is likely to be detrimental for appropriate progenitor number and position, contributing to lissencephaly pathogenesis.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Lisencefalia , Proteínas Asociadas a Microtúbulos/genética , Malformaciones del Sistema Nervioso , Animales , Dineínas/genética , Células Ependimogliales/metabolismo , Proteínas Activadoras de GTPasa/genética , Lisencefalia/genética , Ratones , Mitosis , Mutación , Malformaciones del Sistema Nervioso/genética
3.
J Cell Sci ; 135(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35383828

RESUMEN

Neurons extend axons to form the complex circuitry of the mature brain. This depends on the coordinated response and continuous remodelling of the microtubule and F-actin networks in the axonal growth cone. Growth cone architecture remains poorly understood at nanoscales. We therefore investigated mouse hippocampal neuron growth cones using cryo-electron tomography to directly visualise their three-dimensional subcellular architecture with molecular detail. Our data showed that the hexagonal arrays of actin bundles that form filopodia penetrate and terminate deep within the growth cone interior. We directly observed the modulation of these and other growth cone actin bundles by alteration of individual F-actin helical structures. Microtubules with blunt, slightly flared or gently curved ends predominated in the growth cone, frequently contained lumenal particles and exhibited lattice defects. Investigation of the effect of absence of doublecortin, a neurodevelopmental cytoskeleton regulator, on growth cone cytoskeleton showed no major anomalies in overall growth cone organisation or in F-actin subpopulations. However, our data suggested that microtubules sustained more structural defects, highlighting the importance of microtubule integrity during growth cone migration.


Asunto(s)
Actinas , Conos de Crecimiento , Animales , Axones , Citoesqueleto , Tomografía con Microscopio Electrónico , Ratones , Microtúbulos/ultraestructura , Neuronas
4.
EMBO Rep ; 23(5): e54027, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35289477

RESUMEN

Malformations of human cortical development (MCD) can cause severe disabilities. The lack of human-specific models hampers our understanding of the molecular underpinnings of the intricate processes leading to MCD. Here, we use cerebral organoids derived from patients and genome edited-induced pluripotent stem cells to address pathophysiological changes associated with a complex MCD caused by mutations in the echinoderm microtubule-associated protein-like 1 (EML1) gene. EML1-deficient organoids display ectopic neural rosettes at the basal side of the ventricular zone areas and clusters of heterotopic neurons. Single-cell RNA sequencing shows an upregulation of basal radial glial (RG) markers and human-specific extracellular matrix components in the ectopic cell population. Gene ontology and molecular analyses suggest that ectopic progenitor cells originate from perturbed apical RG cell behavior and yes-associated protein 1 (YAP1)-triggered expansion. Our data highlight a progenitor origin of EML1 mutation-induced MCD and provide new mechanistic insight into the human disease pathology.


Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Corteza Cerebral/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Neuronas/metabolismo , Organoides/metabolismo
5.
EMBO Rep ; 23(10): e54605, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35979738

RESUMEN

Radial glial (RG) cells are the neural stem cells of the developing neocortex. Apical RG (aRG) cells can delaminate to generate basal RG (bRG) cells, a cell type associated with human brain expansion. Here, we report that aRG delamination is regulated by the post-Golgi secretory pathway. Using in situ subcellular live imaging, we show that post-Golgi transport of RAB6+ vesicles occurs toward the minus ends of microtubules and depends on dynein. We demonstrate that the apical determinant Crumbs3 (CRB3) is also transported by dynein. Double knockout of RAB6A/A' and RAB6B impairs apical localization of CRB3 and induces a retraction of aRG cell apical process, leading to delamination and ectopic division. These defects are phenocopied by knockout of the dynein activator LIS1. Overall, our results identify a RAB6-dynein-LIS1 complex for Golgi to apical surface transport in aRG cells, and highlights the role of this pathway in the maintenance of neuroepithelial integrity.


Asunto(s)
Dineínas , Proteínas de Unión al GTP rab , Dineínas/genética , Dineínas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
6.
Neurobiol Dis ; 180: 106085, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933672

RESUMEN

Dynein heavy chain (DYNC1H1) mutations can either lead to severe cerebral cortical malformations, or alternatively may be associated with the development of spinal muscular atrophy with lower extremity predominance (SMA-LED). To assess the origin of such differences, we studied a new Dync1h1 knock-in mouse carrying the cortical malformation p.Lys3334Asn mutation. Comparing with an existing neurodegenerative Dync1h1 mutant (Legs at odd angles, Loa, p.Phe580Tyr/+), we assessed Dync1h1's roles in cortical progenitor and especially radial glia functions during embryogenesis, and assessed neuronal differentiation. p.Lys3334Asn /+ mice exhibit reduced brain and body size. Embryonic brains show increased and disorganized radial glia: interkinetic nuclear migration occurs in mutants, however there are increased basally positioned cells and abventricular mitoses. The ventricular boundary is disorganized potentially contributing to progenitor mislocalization and death. Morphologies of mitochondria and Golgi apparatus are perturbed in vitro, with different effects also in Loa mice. Perturbations of neuronal migration and layering are also observed in p.Lys3334Asn /+ mutants. Overall, we identify specific developmental effects due to a severe cortical malformation mutation in Dync1h1, highlighting the differences with a mutation known instead to primarily affect motor function.


Asunto(s)
Dineínas , Atrofia Muscular Espinal , Humanos , Ratones , Animales , Dineínas/genética , Dineínas Citoplasmáticas/genética , Dineínas Citoplasmáticas/metabolismo , Atrofia Muscular Espinal/genética , Tamaño de los Órganos , Mutación/genética , Encéfalo/metabolismo , Células Madre
7.
Semin Cell Dev Biol ; 76: 33-75, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28951247

RESUMEN

Cerebral cortical development involves a complex series of highly regulated steps to generate the laminated structure of the adult neocortex. Neuronal migration is a key part of this process. We provide here a detailed review of cortical malformations thought to be linked to abnormal neuronal migration. We have focused on providing updated views related to perturbed mechanisms based on the wealth of genetic information currently available, as well as the study of mutant genes in animal models. We discuss mainly type 1 lissencephaly, periventricular heterotopia, type II lissencephaly and polymicrogyria. We also discuss functional classifications such as the tubulinopathies, and emphasize how modern genetics is revealing genes mutated in atypical cases, as well as unexpected genes for classical cases. A role in neuronal migration is revealed for many mutant genes, although progenitor abnormalities also predominate, depending on the disorder. We finish by describing the advantages of human in vitro cell culture models, to examine human-specific cells and transcripts, and further mention non-genetic mechanisms leading to cortical malformations.


Asunto(s)
Malformaciones del Desarrollo Cortical de Grupo I/genética , Humanos
8.
Hum Mol Genet ; 27(2): 224-238, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29077851

RESUMEN

Genetic findings reported by our group and others showed that de novo missense variants in the KIF2A gene underlie malformations of brain development called pachygyria and microcephaly. Though KIF2A is known as member of the Kinesin-13 family involved in the regulation of microtubule end dynamics through its ATP dependent MT-depolymerase activity, how KIF2A variants lead to brain malformations is still largely unknown. Using cellular and in utero electroporation approaches, we show here that KIF2A disease-causing variants disrupts projection neuron positioning and interneuron migration, as well as progenitors proliferation. Interestingly, further dissection of this latter process revealed that ciliogenesis regulation is also altered during progenitors cell cycle. Altogether, our data suggest that deregulation of the coupling between ciliogenesis and cell cycle might contribute to the pathogenesis of KIF2A-related brain malformations. They also raise the issue whether ciliogenesis defects are a hallmark of other brain malformations, such as those related to tubulins and MT-motor proteins variants.


Asunto(s)
Cilios/genética , Cinesinas/metabolismo , Malformaciones del Desarrollo Cortical/genética , Proteínas Represoras/metabolismo , Animales , Encéfalo/metabolismo , Ciclo Celular/genética , Cilios/fisiología , Células HeLa , Humanos , Cinesinas/genética , Malformaciones del Desarrollo Cortical/metabolismo , Ratones , Microcefalia/metabolismo , Microtúbulos/metabolismo , Neurogénesis , Proteínas Represoras/genética , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
9.
Am J Med Genet C Semin Med Genet ; 181(4): 627-637, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31710781

RESUMEN

EML1 encodes the protein Echinoderm microtubule-associated protein-like 1 or EMAP-1 that binds to the microtubule complex. Mutations in this gene resulting in complex brain malformations have only recently been published with limited clinical descriptions. We provide further clinical and imaging details on three previously published families, and describe two novel unrelated individuals with a homozygous partial EML1 deletion and a homozygous missense variant c.760G>A, p.(Val254Met), respectively. From review of the clinical and imaging data of eight individuals from five families with biallelic EML1 variants, a very consistent imaging phenotype emerges. The clinical syndrome is characterized by mainly neurological features including severe developmental delay, drug-resistant seizures and visual impairment. On brain imaging there is megalencephaly with a characteristic ribbon-like subcortical heterotopia combined with partial or complete callosal agenesis and an overlying polymicrogyria-like cortical malformation. Several of its features can be recognized on prenatal imaging especially the abnormaly formed lateral ventricles, hydrocephalus (in half of the cases) and suspicion of a neuronal migration disorder. In conclusion, biallelic EML1 disease-causing variants cause a highly specific pattern of congenital brain malformations, severe developmental delay, seizures and visual impairment.


Asunto(s)
Encéfalo/patología , Proteínas Asociadas a Microtúbulos/genética , Humanos , Malformaciones del Desarrollo Cortical del Grupo II/genética , Mutación Missense , Eliminación de Secuencia
10.
Hum Mol Genet ; 26(1): 90-108, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28007902

RESUMEN

Human doublecortin (DCX) mutations are associated with severe brain malformations leading to aberrant neuron positioning (heterotopia), intellectual disability and epilepsy. The Dcx protein plays a key role in neuronal migration, and hippocampal pyramidal neurons in Dcx knockout (KO) mice are disorganized. The single CA3 pyramidal cell layer observed in wild type (WT) is present as two abnormal layers in the KO, and CA3 KO pyramidal neurons are more excitable than WT. Dcx KO mice also exhibit spontaneous epileptic activity originating in the hippocampus. It is unknown, however, how hyperexcitability arises and why two CA3 layers are observed.Transcriptome analyses were performed to search for perturbed postnatal gene expression, comparing Dcx KO CA3 pyramidal cell layers with WT. Gene expression changes common to both KO layers indicated mitochondria and Golgi apparatus anomalies, as well as increased cell stress. Intriguingly, gene expression analyses also suggested that the KO layers differ significantly from each other, particularly in terms of maturity. Layer-specific molecular markers and BrdU birthdating to mark the final positions of neurons born at distinct timepoints revealed inverted layering of the CA3 region in Dcx KO animals. Notably, many early-born 'outer boundary' neurons are located in an inner position in the Dcx KO CA3, superficial to other pyramidal neurons. This abnormal positioning likely affects cell morphology and connectivity, influencing network function. Dissecting this Dcx KO phenotype sheds light on coordinated developmental mechanisms of neuronal subpopulations, as well as gene expression patterns contributing to a bi-layered malformation associated with epilepsy.


Asunto(s)
Hipocampo/metabolismo , Hipocampo/patología , Proteínas Asociadas a Microtúbulos/fisiología , Neuronas/metabolismo , Neuronas/patología , Neuropéptidos/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/ultraestructura , Región CA3 Hipocampal/metabolismo , Región CA3 Hipocampal/patología , Región CA3 Hipocampal/ultraestructura , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Hipocampo/ultraestructura , Procesamiento de Imagen Asistido por Computador , Captura por Microdisección con Láser , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Neuronas/ultraestructura
11.
J Anat ; 235(3): 637-650, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31173351

RESUMEN

The cerebral cortex is a highly organized structure responsible for advanced cognitive functions. Its development relies on a series of steps including neural progenitor cell proliferation, neuronal migration, axonal outgrowth and brain wiring. Disruption of these steps leads to cortical malformations, often associated with intellectual disability and epilepsy. We have generated a new resource to shed further light on subcortical heterotopia, a malformation characterized by abnormal neuronal position. We describe here the generation and characterization of a knockout (KO) mouse model for Eml1, a microtubule-associated protein showing mutations in human ribbon-like subcortical heterotopia. As previously reported for a spontaneous mouse mutant showing a mutation in Eml1, we observe severe cortical heterotopia in the KO. We also observe abnormal progenitor cells in early corticogenesis, likely to be the origin of the defects. EML1 KO mice on the C57BL/6N genetic background also appear to present a wider phenotype than the original mouse mutant, showing additional brain anomalies, such as corpus callosum abnormalities. We compare the anatomy of male and female mice and also study heterozygote animals. This new resource will help unravel roles for Eml1 in brain development and tissue architecture, as well as the mechanisms leading to severe subcortical heterotopia.


Asunto(s)
Encéfalo/patología , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/patología , Proteínas Asociadas a Microtúbulos/fisiología , Animales , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/embriología , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones Noqueados
12.
J Neurochem ; 146(5): 500-525, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29570795

RESUMEN

The cerebral cortex is a highly organized structure whose development depends on diverse progenitor cell types, namely apical radial glia, intermediate progenitors, and basal radial glia cells, which are responsible for the production of the correct neuronal output. In recent years, these progenitor cell types have been deeply studied, particularly basal radial glia and their role in cortical expansion and gyrification. We review here a broad series of factors that regulate progenitor behavior and daughter cell fate. We first describe the different neuronal progenitor types, emphasizing the differences between lissencephalic and gyrencephalic species. We then review key factors shown to influence progenitor proliferation versus differentiation, discussing their roles in progenitor dynamics, neuronal production, and potentially brain size and complexity. Although spindle orientation has been considered a critical factor for mode of division and daughter cell output, we discuss other features that are emerging as crucial for these processes such as organelle and cell cycle dynamics. Additionally, we highlight the importance of adhesion molecules and the polarity complex for correct cortical development. Finally, we briefly discuss studies assessing progenitor multipotency and its possible contribution to the production of specific neuronal populations. This review hence summarizes recent aspects of cortical progenitor cell biology, and pinpoints emerging features critical for their behavior.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Corteza Cerebral/citología , Células Madre/fisiología , Animales , Humanos
13.
Neurobiol Dis ; 92(Pt A): 18-45, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26299390

RESUMEN

A wide spectrum of focal, regional, or diffuse structural brain abnormalities, collectively known as malformations of cortical development (MCDs), frequently manifest with intellectual disability (ID), epilepsy, and/or autistic spectrum disorder (ASD). As the acronym suggests, MCDs are perturbations of the normal architecture of the cerebral cortex and hippocampus. The pathogenesis of these disorders remains incompletely understood; however, one area that has provided important insights has been the study of neuronal migration. The amalgamation of human genetics and experimental studies in animal models has led to the recognition that common genetic causes of neurodevelopmental disorders, including many severe epilepsy syndromes, are due to mutations in genes regulating the migration of newly born post-mitotic neurons. Neuronal migration genes often, though not exclusively, code for proteins involved in the function of the cytoskeleton. Other cellular processes, such as cell division and axon/dendrite formation, which similarly depend on cytoskeletal functions, may also be affected. We focus here on how the susceptibility of the highly organized neocortex and hippocampus may be due to their laminar organization, which involves the tight regulation, both temporally and spatially, of gene expression, specialized progenitor cells, the migration of neurons over large distances and a birthdate-specific layering of neurons. Perturbations in neuronal migration result in abnormal lamination, neuronal differentiation defects, abnormal cellular morphology and circuit formation. Ultimately this results in disorganized excitatory and inhibitory activity leading to the symptoms observed in individuals with these disorders.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/fisiopatología , Citoesqueleto/metabolismo , Epilepsia/fisiopatología , Malformaciones del Desarrollo Cortical del Grupo II/fisiopatología , Movimiento Celular/fisiología , Humanos , Neuronas/fisiología
14.
Hum Mol Genet ; 23(6): 1516-26, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24179174

RESUMEN

Over the last years, the critical role of cytoskeletal proteins in cortical development including neuronal migration as well as in neuronal morphology has been well established. Inputs from genetic studies were provided through the identification of several mutated genes encoding either proteins associated with microtubules (DCX, LIS1, KIF2A, KIF5C, DYNC1H1) or tubulin subunits (TUBA1A, TUBB2B, TUBB5 and TUBG1), in malformations of cortical development (MCD). We also reported the identification of missense mutations in TUBB3, the postmitotic neuronal specific tubulin, in six different families presenting either polymicrogyria or gyral disorganization in combination with cerebellar and basal ganglial abnormalities. Here, we investigate further the association between TUBB3 mutations and MCDs by analyzing the consequences of Tubb3 knockdown on cortical development in mice. Using the in utero-electroporation approach, we demonstrate that Tubb3 knockdown leads to delayed bipolar morphology and radial migration with evidence, suggesting that the neuronal arrest is a transient phenomenon overcome after birth. Silenced blocked cells display a round-shape and decreased number of processes and a delay in the acquisition of the bipolar morphology. Also, more Tbr2 positive cells are observed, although less cells express the proliferation marker Ki67, suggesting that Tubb3 inactivation might have an indirect effect on intermediate progenitor proliferation. Furthermore, we show by rescue experiments the non-interchangeability of other beta-tubulins which are unable to rescue the phenotype. Our study highlights the critical and specific role of Tubb3 on the stereotyped morphological changes and polarization processes that are required for initiating radial migration to the cortical plate.


Asunto(s)
Movimiento Celular , Corteza Cerebral/metabolismo , Malformaciones del Desarrollo Cortical/genética , Tubulina (Proteína)/metabolismo , Animales , Proteína Doblecortina , Electroporación , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Malformaciones del Desarrollo Cortical/patología , Ratones , Mutación Missense , Embarazo , Isoformas de Proteínas , Tubulina (Proteína)/genética
15.
Brain ; 142(4): 834-838, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30946475
16.
Neurobiol Dis ; 69: 156-68, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24874545

RESUMEN

Complex febrile seizures are often reported in the history of patients with mesio-temporal lobe epilepsy (MTLE) but their role in its physiopathology remains controversial. We postulated that prolonged hyperthermic seizures might, as a "single-hit", modify the hippocampal rhythms, facilitate epileptogenesis and influence subsequent epilepsy when a second-hit already exists or subsequently occurs. To test this hypothesis, we examined the effects of hyperthermic seizures (30min at 40-41°C) at postnatal day 10 on hippocampal activity in C57BL/6J mice in comparison to their littermates in sham conditions (22°C), with or without another insult. Using local field potential, we observed an asymmetry in the hippocampal susceptibility to seize in hyperthermic conditions. When these mice were adult, an asymmetrical increase of low frequency power was also recorded in the hippocampus when compared to sham animals. Using two different "two-hit" protocols, no increase in seizures or hippocampal discharge frequency or duration was observed, either in mice with a genetic CA3 dysplasia (Dcx knockout), or in mice injected with kainate into the dorsal hippocampus at P60. However, in the latter condition, which is reminiscent of MTLE, the hyperthermic seizures accelerated epileptogenesis and decreased the power in the high frequency gamma band, as well as decreasing the coherence between hippocampi and the involvement of the contralateral hippocampus during hippocampal paroxysmal discharges. Our data suggest that a single episode of prolonged hyperthermic seizures does not induce per se, but accelerates epileptogenesis and could lead to an asymmetrical dysfunction in the hippocampal rhythmicity in both physiological and pathological conditions.


Asunto(s)
Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiopatología , Convulsiones Febriles/fisiopatología , Animales , Ritmo Delta , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Electroencefalografía , Femenino , Ritmo Gamma/fisiología , Ácido Kaínico , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Neuropéptidos/deficiencia , Neuropéptidos/genética , Ritmo Teta
17.
Brain ; 136(Pt 1): 223-44, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23365099

RESUMEN

X-linked isolated lissencephaly sequence and subcortical band heterotopia are allelic human disorders associated with mutations of doublecortin (DCX), giving both familial and sporadic forms. DCX encodes a microtubule-associated protein involved in neuronal migration during brain development. Structural data show that mutations can fall either in surface residues, likely to impair partner interactions, or in buried residues, likely to impair protein stability. Despite the progress in understanding the molecular basis of these disorders, the prognosis value of the location and impact of individual DCX mutations has largely remained unclear. To clarify this point, we investigated a cohort of 180 patients who were referred with the agyria-pachygyria subcortical band heterotopia spectrum. DCX mutations were identified in 136 individuals. Analysis of the parents' DNA revealed the de novo occurrence of DCX mutations in 76 cases [62 of 70 females screened (88.5%) and 14 of 60 males screened (23%)], whereas in the remaining cases, mutations were inherited from asymptomatic (n = 14) or symptomatic mothers (n = 11). This represents 100% of families screened. Female patients with DCX mutation demonstrated three degrees of clinical-radiological severity: a severe form with a thick band (n = 54), a milder form (n = 24) with either an anterior thin or an intermediate thickness band and asymptomatic carrier females (n = 14) with normal magnetic resonance imaging results. A higher proportion of nonsense and frameshift mutations were identified in patients with de novo mutations. An analysis of predicted effects of missense mutations showed that those destabilizing the structure of the protein were often associated with more severe phenotypes. We identified several severe- and mild-effect mutations affecting surface residues and observed that the substituted amino acid is also critical in determining severity. Recurrent mutations representing 34.5% of all DCX mutations often lead to similar phenotypes, for example, either severe in sporadic subcortical band heterotopia owing to Arg186 mutations or milder in familial cases owing to Arg196 mutations. Taken as a whole, these observations demonstrate that DCX-related disorders are clinically heterogeneous, with severe sporadic and milder familial subcortical band heterotopia, each associated with specific DCX mutations. There is a clear influence of the individual mutated residue and the substituted amino acid in determining phenotype severity.


Asunto(s)
Encéfalo/patología , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación , Neuropéptidos/genética , Adolescente , Adulto , Niño , Preescolar , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/patología , Análisis Mutacional de ADN , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fibras Nerviosas Mielínicas/patología , Tamaño de los Órganos/genética
18.
Mar Environ Res ; 197: 106448, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518407

RESUMEN

Glass sponge gardens are important biogenic habitats that support fish communities in Pacific Canada. However, glass sponges (class Hexactinellida) are delicate and susceptible to damage from fishing gear such as downriggers. In this study we document changes in a fish community before -and after damage from a presumed fishing event that resulted in a reduction of 58.9% of the available sponge habitat in a small cloud sponge garden in British Columbia. This habitat loss coincided with a decline of 76.9% of the relative abundance of rockfish, an economically important group of fishes, at the garden. This decline was particularly pronounced in small size classes with the disappearance of juvenile rockfish after the sponge loss. Although based on a single site, this is the first documentation of how anthropogenic damage in a sponge aggregation may impact the associated fish community. Damage from fishing gear is likely most pronounced in small sponge aggregations, like nearshore gardens, where a single event may result in a disproportionately large loss of available fish habitat. Slow regrowth of sponges suggests the habitat availability may be permanently altered at these sites and can coincide with shifts in the localized fish community that may be long lasting on a local scale. Currently sponge gardens do not have any direct spatial protections in the Pacific Northwest, and this work highlights the importance of considering them in future protection initiatives.


Asunto(s)
Ecosistema , Caza , Animales , Colombia Británica , Peces
19.
Hum Mol Genet ; 19(18): 3599-613, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20603323

RESUMEN

Malformations of cortical development are characteristic of a plethora of diseases that includes polymicrogyria, periventricular and subcortical heterotopia and lissencephaly. Mutations in TUBA1A and TUBB2B, each a member of the multigene families that encode alpha- and beta-tubulins, have recently been implicated in these diseases. Here we examine the defects that result from nine disease-causing mutations (I188L, I238V, P263T, L286F, V303G, L397P, R402C, 402H, S419L) in TUBA1A. We show that the expression of all the mutant proteins in vitro results in the generation of tubulin heterodimers in varying yield and that these can co-polymerize with microtubules in vitro. We identify several kinds of defects that result from these mutations. Among these are various defects in the chaperone-dependent pathway leading to de novo tubulin heterodimer formation. These include a defective interaction with the chaperone prefoldin, a reduced efficiency in the generation of productive folding intermediates as a result of inefficient interaction with the cytosolic chaperonin, CCT, and, in several cases, a failure to stably interact with TBCB, one of five tubulin-specific chaperones that act downstream of CCT in the tubulin heterodimer assembly pathway. Other defects include structural instability in vitro, diminished stability in vivo, a compromised ability to co-assemble with microtubules in vivo and a suppression of microtubule growth rate in the neurites (but not the soma) of cultured neurons. Our data are consistent with the notion that some mutations in TUBA1A result in tubulin deficit, whereas others reflect compromised interactions with one or more MAPs that are essential to proper neuronal migration.


Asunto(s)
Malformaciones del Desarrollo Cortical/genética , Mutación Missense , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Dimerización , Humanos , Malformaciones del Desarrollo Cortical/metabolismo , Ratones , Conformación Molecular , Mutación , Pliegue de Proteína , Estabilidad Proteica , Tubulina (Proteína)/metabolismo
20.
Eur J Neurosci ; 35(2): 244-56, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22250815

RESUMEN

We report data on the neuronal form, synaptic connectivity, neuronal excitability and epileptiform population activities generated by the hippocampus of animals with an inactivated doublecortin gene. The protein product of this gene affects neuronal migration during development. Human doublecortin (DCX) mutations are associated with lissencephaly, subcortical band heterotopia, and syndromes of intellectual disability and epilepsy. In Dcx(-/Y) mice, CA3 hippocampal pyramidal cells are abnormally laminated. The lamination defect was quantified by measuring the extent of the double, dispersed or single pyramidal cell layer in the CA3 region of Dcx(-/Y) mice. We investigated how this abnormal lamination affected two groups of synapses that normally innervate defined regions of the CA3 pyramidal cell membrane. Numbers of parvalbumin (PV)-containing interneurons, which contact peri-somatic sites, were not reduced in Dcx(-/Y) animals. Pyramidal cells in double, dispersed or single layers received PV-containing terminals. Excitatory mossy fibres which normally target proximal CA3 pyramidal cell apical dendrites apparently contact CA3 cells of both layers in Dcx(-/Y) animals but sometimes on basilar rather than apical dendrites. The dendritic form of pyramidal cells in Dcx(-/Y) animals was altered and pyramidal cells of both layers were more excitable than their counterparts in wild-type animals. Unitary inhibitory field events occurred at higher frequency in Dcx(-/Y) animals. These differences may contribute to a susceptibility to epileptiform activity: a modest increase in excitability induced both interictal and ictal-like discharges more effectively in tissue from Dcx(-/Y) mice than from wild-type animals.


Asunto(s)
Hipocampo/patología , Hipocampo/fisiopatología , Proteínas Asociadas a Microtúbulos/deficiencia , Neuronas/patología , Neuropéptidos/deficiencia , Animales , Movimiento Celular/genética , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Epilepsia/patología , Epilepsia/fisiopatología , Inmunohistoquímica , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Neuronas/fisiología , Neuropéptidos/genética , Técnicas de Placa-Clamp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA