Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Am J Pathol ; 190(8): 1735-1751, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32339496

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) and chronic pancreatitis are characterized by a dense collagen-rich desmoplastic reaction. Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase activated by collagens that can regulate cell proliferation, migration, adhesion, and remodeling of the extracellular matrix. To address the role of DDR1 in PDA, Ddr1-null (Ddr-/-) mice were crossed with the KrasG12D/+; Trp53R172H/+; Ptf1aCre/+ (KPC) model of metastatic PDA. Ddr1-/-; KPC mice progress to differentiated PDA but resist progression to poorly differentiated cancer compared with KPC control mice. Strikingly, severe pancreatic atrophy accompanied tumor progression in Ddr1-/-; KPC mice. To further explore the effects of Ddr1 ablation, Ddr1-/- mice were crossed with the KrasG12D/+; Ptf1aCre/+ neoplasia model and subjected to cerulein-induced experimental pancreatitis. Similar to KPC mice, tissue atrophy was a hallmark of both neoplasia and pancreatitis models in the absence of Ddr1. Compared with controls, Ddr1-/- models had increased acinar cell dropout and reduced proliferation with no difference in apoptotic cell death between control and Ddr1-/- animals. In most models, organ atrophy was accompanied by increased fibrillar collagen deposition, suggesting a compensatory response in the absence of this collagen receptor. Overall, these data suggest that DDR1 regulates tissue homeostasis in the neoplastic and injured pancreas.


Asunto(s)
Células Acinares/patología , Carcinoma Ductal Pancreático/genética , Receptor con Dominio Discoidina 1/genética , Neoplasias Pancreáticas/genética , Células Acinares/metabolismo , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Receptor con Dominio Discoidina 1/metabolismo , Progresión de la Enfermedad , Homeostasis/fisiología , Humanos , Ratones , Ratones Noqueados , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Transducción de Señal/fisiología
2.
Lab Invest ; 100(12): 1517-1531, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32612286

RESUMEN

Primary and metastatic melanoma progression are supported by a local microenvironment comprising, inter alia, of cancer-associated fibroblasts (CAFs). We previously reported in orthotropic/syngeneic mouse models that the stromal ectoenzyme CD38 participates in melanoma growth and metastasis. The results presented here suggest that CD38 is a novel regulator of CAFs' pro-tumorigenic functions. Orthotopic co-implantation of CD38 deficient fibroblasts and B16F10 melanoma cells limited tumor size, compared with CD38-expressing fibroblasts. Intrinsically, CAF-CD38 promoted migration of primary fibroblasts toward melanoma cells. Further, in vitro paracrine effects of CAF-CD38 fostered tumor cell migration and invasion as well as endothelial cell tube formation. Mechanistically, we report that CAF-CD38 drives the protein expression of an angiogenic/pro-metastatic signature, which includes VEGF-A, FGF-2, CXCL-12, MMP-9, and HGF. Data suggest that CAF-CD38 fosters tumorigenesis by enabling the production of pro-tumoral factors that promote cell invasion, migration, and angiogenesis.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Melanoma/metabolismo , Microambiente Tumoral/fisiología , ADP-Ribosil Ciclasa 1/genética , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Movimiento Celular/genética , Células Cultivadas , Melanoma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microambiente Tumoral/genética
3.
Lab Invest ; 100(9): 1208-1222, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32457352

RESUMEN

Aberrant activation of the hedgehog (Hh) signaling pathway is associated with the formation of medulloblastoma (MB), the most common malignant pediatric brain tumor. However, tumor cells from human and mouse MB can not be passaged or preserved after being adherently cultured. Moreover, Hh signaling in MB cells is inactivated in such culture. Here we demonstrate that MB cells are capable of forming tumoroids (tumor spheroids) in vitro under optimized conditions, which can be further passaged and cryopreserved. More importantly, MB cells maintain Hh pathway activation and cell proliferation in tumoroids. Our studies further reveal that tumoroids-forming capacity of MB cells relies on astrocytes, a major component of the MB microenvironment. Astrocytes facilitate the formation of MB tumoroids by secreting sonic hedgehog (Shh) and generating astrocyte-derived extracellular matrix. These findings demonstrate the critical role of stromal astrocytes in supporting the survival and proliferation of MB cells in vitro. This study establishes a valid model for long-term culture of primary MB cells, which could be greatly beneficial for future investigation of MB tumorigenicity and the development of improved approaches to treat MB.


Asunto(s)
Astrocitos/metabolismo , Neoplasias Cerebelosas/genética , Matriz Extracelular/metabolismo , Proteínas Hedgehog/genética , Meduloblastoma/genética , Transducción de Señal/genética , Animales , Astrocitos/patología , Línea Celular Tumoral , Neoplasias Cerebelosas/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/metabolismo , Meduloblastoma/patología , Ratones Noqueados , Ratones SCID , Ratones Transgénicos , Receptor Patched-2/genética , Receptor Patched-2/metabolismo , Microambiente Tumoral/genética , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
4.
Lab Invest ; 97(3): 302-317, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28092365

RESUMEN

The mechanisms by which the extreme desmoplasia observed in pancreatic tumors develops remain unknown and its role in pancreatic cancer progression is unsettled. Chemokines have a key role in the recruitment of a wide variety of cell types in health and disease. Transcript and protein profile analyses of human and murine cell lines and human tissue specimens revealed a consistent elevation in the receptors CCR10 and CXCR6, as well as their respective ligands CCL28 and CXCL16. Elevated ligand expression was restricted to tumor cells, whereas receptors were in both epithelial and stromal cells. Consistent with its regulation by inflammatory cytokines, CCL28 and CCR10, but not CXCL16 or CXCR6, were upregulated in human pancreatitis tissues. Cytokine stimulation of pancreatic cancer cells increased CCL28 secretion in epithelial tumor cells but not an immortalized activated human pancreatic stellate cell line (HPSC). Stellate cells exhibited dose- and receptor-dependent chemotaxis in response to CCL28. This functional response was not linked to changes in activation status as CCL28 had little impact on alpha smooth muscle actin levels or extracellular matrix deposition or alignment. Co-culture assays revealed CCL28-dependent chemotaxis of HPSC toward cancer but not normal pancreatic epithelial cells, consistent with stromal cells being a functional target for the epithelial-derived chemokine. These data together implicate the chemokine CCL28 in the inflammation-mediated recruitment of cancer-associated stellate cells into the pancreatic cancer parenchyma.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Quimiocinas/metabolismo , Quimiotaxis , Neoplasias Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Quimiocinas/genética , Técnicas de Cocultivo , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Biophys J ; 109(9): 1807-17, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26536258

RESUMEN

In this work, a chemomechanical model describing the growth dynamics of cell-matrix adhesion structures (i.e., focal adhesions (FAs)) is developed. We show that there are three regimes for FA evolution depending on their size. Specifically, nascent adhesions with initial lengths below a critical value that are yet to engage in actin fibers will dissolve, whereas bigger ones will grow into mature FAs with a steady state size. In adhesions where growth surpasses the steady state size, disassembly will occur until their sizes are reduced to the equilibrium state. This finding arises from the fact that polymerization of adhesion proteins is force-dependent. Under actomyosin contraction, individual integrin bonds within small FAs (i.e., nascent adhesions or focal complexes) must transmit higher loads while the phenomenon of stress concentration occurs at the edge of large adhesion patches. As such, an effective stiffness of the FA-extracellular matrix complex that is either too small or too large will be relatively low, resulting in a limited actomyosin pulling force developed at the edge that is insufficient to prevent disassembly. Furthermore, it is found that a stiffer extracellular matrix and/or nucleus, as well as a stronger chemomechanical feedback, will induce larger adhesions along with a higher level of contraction force. Interestingly, switching the extracellular side from an elastic half-space, corresponding to some widely used in vitro gel substrates, to a one-dimensional fiber (as in the case of cells anchoring to a fibrous scaffold in vivo) does not qualitative change these conclusions. Our model predictions are in good agreement with a variety of experimental observations obtained in this study as well as those reported in the literature. Furthermore, this new model, to our knowledge, provides a framework with which to understand how both intracellular and extracellular perturbations lead to changes in adhesion structure number and size.


Asunto(s)
Núcleo Celular/química , Matriz Extracelular/química , Adhesiones Focales/química , Modelos Biológicos , Modelos Químicos , Actomiosina/química , Fenómenos Biomecánicos , Elasticidad , Integrinas/química , Polimerizacion
6.
Physiol Genomics ; 46(7): 223-44, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24520152

RESUMEN

For decades tumors have been recognized as "wounds that do not heal." Besides the commonalities that tumors and wounded tissues share, the process of wound healing also portrays similar characteristics with chronic fibrosis. In this review, we suggest a tight interrelationship, which is governed as a concurrence of cellular and microenvironmental reactivity among wound healing, chronic fibrosis, and cancer development/progression (i.e., the WHFC triad). It is clear that the same cell types, as well as soluble and matrix elements that drive wound healing (including regeneration) via distinct signaling pathways, also fuel chronic fibrosis and tumor progression. Hence, here we review the relationship between fibrosis and cancer through the lens of wound healing.


Asunto(s)
Fibrosis , Neoplasias/patología , Cicatrización de Heridas , Coagulación Sanguínea , Enfermedad Crónica , Progresión de la Enfermedad , Humanos
7.
Biomaterials ; 310: 122631, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38815457

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) presents a formidable clinical challenge due to its intricate microenvironment characterized by desmoplasia and complex tumor-stroma interactions. Conventional models hinder studying cellular crosstalk for therapeutic development. To recapitulate key features of PDAC masses, this study creates a novel sea-and-island PDAC tumor construct (s&i PTC). The s&i PTC consists of 3D-printed islands of human PDAC cells positioned within an interstitial extracellular matrix (ECM) populated by human cancer-associated fibroblasts (CAFs). This design closely mimics the in vivo desmoplastic architecture and nutrient-poor conditions. The model enables studying dynamic tumor-stroma crosstalk and signaling reciprocity, revealing both known and yet-to-be-discovered multicellular metabolic adaptations. Using the model, we discovered the orchestrated dynamic alterations of CAFs under nutrient stress, resembling critical in vivo human tumor niches, such as the secretion of pro-tumoral inflammatory factors. Additionally, nutrient scarcity induces dynamic alterations in the ECM composition and exacerbates poor cancer cell differentiation-features well-established in PDAC progression. Proteomic analysis unveiled the enrichment of proteins associated with aggressive tumor behavior and ECM remodeling in response to poor nutritional conditions, mimicking the metabolic stresses experienced by avascular pancreatic tumor cores. Importantly, the model's relevance to patient outcomes is evident through an inverse correlation between biomarker expression patterns in the s&i PTCs and PDAC patient survival rates. Key findings include upregulated MMPs and key ECM proteins (such as collagen 11 and TGFß) under nutrient-avid conditions, known to be regulated by CAFs, alongside the concomitant reduction in E-cadherin expression associated with a poorly differentiated PDAC state under nutrient deprivation. Furthermore, elevated levels of hyaluronic acid (HA) and integrins in response to nutrient deprivation underscore the model's fidelity to the PDAC microenvironment. We also observed increased IL-6 and reduced α-SMA expression under poor nutritional conditions, suggesting a transition of CAFs from myofibroblastic to inflammatory phenotypes under a nutrient stress akin to in vivo niches. In conclusion, the s&i PTC represents a significant advancement in engineering clinically relevant 3D models of PDAC masses. It offers a promising platform for elucidating tumor-stroma interactions and guiding future therapeutic strategies to improve patient outcomes.


Asunto(s)
Carcinoma Ductal Pancreático , Matriz Extracelular , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Matriz Extracelular/metabolismo , Línea Celular Tumoral , Impresión Tridimensional , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Bioimpresión/métodos , Células del Estroma/metabolismo , Células del Estroma/patología , Modelos Biológicos
8.
bioRxiv ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38586042

RESUMEN

Genetic studies indicate that breast cancer can be divided into several basic molecular groups. One of these groups, termed IntClust-2, is characterized by amplification of a small portion of chromosome 11 and has a median survival of only five years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study we used a gene editing method to knock out, one by one, each of 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells. In addition to well-known drivers such as CCND1 and PAK1 , we identified two different genes ( SERPINH1 and P4HA3 ), that encode proteins involved in collagen synthesis and organization. Using both in vitro and in vivo functional analyses, we determined that P4HA3 and/or SERPINH1 provide a critical driver function on IntClust-2 basic processes, such as viability, proliferation, and migration. Inhibiting these enzymes via genetic or pharmacologic means reduced collagen synthesis and impeded oncogenic signaling transduction in cell culture models, and a small-molecule inhibitor of P4HA3 was effective in treating 11q13 tumor growth in an animal model. As collagen has a well-known association with tissue stiffness and aggressive forms of breast cancer, we believe that the two genes we identified provide an opportunity for a new therapeutic strategy in IntClust-2 breast cancers.

9.
bioRxiv ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293200

RESUMEN

Pancreatic cancer is becoming increasingly deadly, with treatment options limited due to, among others, the complex tumor microenvironment (TME). This short communications study investigates pulsed low-dose-rate radiation (PLDR) as a potential alternative to conventional radiotherapy for pancreatic cancer neoadjuvant treatment. Our ex vivo research demonstrates that PLDR, in combination with chemotherapy, promotes a shift from tumor-promoting to tumor-suppressing properties in a key component of the pancreatic cancer microenvironment we called CAFu (cancer-associated fibroblasts and selfgenerated extracellular matrix functional units). This beneficial effect translates to reduced desmoplasia (fibrous tumor expansion) and suggests PLDR's potential to improve total neoadjuvant therapy effectiveness. To comprehensively assess this functional shift, we developed the HOST-Factor, a single score integrating multiple biomarkers. This tool provides a more accurate picture of CAFu function compared to individual biomarkers and could be valuable for guiding and monitoring future therapeutic strategies. Our findings support the ongoing NCT04452357 clinical trial testing PLDR safety and TME normalization potential in pancreatic cancer patients. The HOST-Factor will be used in samples collected from this trial to validate its potential as a key tool for personalized medicine in this aggressive disease.

10.
bioRxiv ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38798370

RESUMEN

Understanding pancreatic cancer biology is fundamental for identifying new targets and for developing more effective therapies. In particular, the contribution of the stromal microenvironment to pancreatic cancer tumorigenesis requires further exploration. Here, we report the stromal roles of the synaptic protein Netrin G1 Ligand (NGL-1) in pancreatic cancer, uncovering its pro-tumor functions in cancer-associated fibroblasts and in immune cells. We observed that the stromal expression of NGL-1 inversely correlated with patients' overall survival. Moreover, germline knockout (KO) mice for NGL-1 presented decreased tumor burden, with a microenvironment that is less supportive of tumor growth. Of note, tumors from NGL-1 KO mice produced less immunosuppressive cytokines and displayed an increased percentage of CD8 + T cells than those from control mice, while preserving the physical structure of the tumor microenvironment. These effects were shown to be mediated by NGL-1 in both immune cells and in the local stroma, in a TGF-ß-dependent manner. While myeloid cells lacking NGL-1 decreased the production of immunosuppressive cytokines, NGL-1 KO T cells showed increased proliferation rates and overall polyfunctionality compared to control T cells. CAFs lacking NGL-1 were less immunosuppressive than controls, with overall decreased production of pro-tumor cytokines and compromised ability to inhibit CD8 + T cells activation. Mechanistically, these CAFs downregulated components of the TGF-ß pathway, AP-1 and NFAT transcription factor families, resulting in a less tumor-supportive phenotype. Finally, targeting NGL-1 genetically or using a functionally antagonistic small peptide phenocopied the effects of chemotherapy, while modulating the immunosuppressive tumor microenvironment (TME), rather than eliminating it. We propose NGL-1 as a new local stroma and immunomodulatory molecule, with pro-tumor roles in pancreatic cancer. Statement of Significance: Here we uncovered the pro-tumor roles of the synaptic protein NGL-1 in the tumor microenvironment of pancreatic cancer, defining a new target that simultaneously modulates tumor cell, fibroblast, and immune cell functions. This study reports a new pathway where NGL-1 controls TGF-ß, AP-1 transcription factor members and NFAT1, modulating the immunosuppressive microenvironment in pancreatic cancer. Our findings highlight NGL-1 as a new stromal immunomodulator in pancreatic cancer.

11.
Clin Cancer Res ; 29(18): 3793-3812, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37587561

RESUMEN

PURPOSE: This research investigates the association between benzodiazepines (BZD) and cancer patient survival outcomes, the pancreatic cancer tumor microenvironment, and cancer-associated fibroblast (CAF) signaling. EXPERIMENTAL DESIGN: Multivariate Cox regression modeling was used to retrospectively measure associations between Roswell Park cancer patient survival outcomes and BZD prescription records. IHC, H&E, Masson's trichrome, RNAscope, and RNA sequencing were used to evaluate the impact of lorazepam (LOR) on the murine PDAC tumor microenvironment. ELISA and qPCR were used to determine the impact of BZDs on IL6 expression or secretion by human-immortalized pancreatic CAFs. PRESTO-Tango assays, reanalysis of PDAC single-cell sequencing/TCGA data sets, and GPR68 CRISPRi knockdown CAFs were used to determine the impact of BZDs on GPR68 signaling. RESULTS: LOR is associated with worse progression-free survival (PFS), whereas alprazolam (ALP) is associated with improved PFS, in pancreatic cancer patients receiving chemotherapy. LOR promotes desmoplasia (fibrosis and extracellular matrix protein deposition), inflammatory signaling, and ischemic necrosis. GPR68 is preferentially expressed on human PDAC CAFs, and n-unsubstituted BZDs, such as LOR, significantly increase IL6 expression and secretion in CAFs in a pH and GPR68-dependent manner. Conversely, ALP and other GPR68 n-substituted BZDs decrease IL6 in human CAFs in a pH and GPR68-independent manner. Across many cancer types, LOR is associated with worse survival outcomes relative to ALP and patients not receiving BZDs. CONCLUSIONS: We demonstrate that LOR stimulates fibrosis and inflammatory signaling, promotes desmoplasia and ischemic necrosis, and is associated with decreased pancreatic cancer patient survival.


Asunto(s)
Lorazepam , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Interleucina-6/genética , Estudios Retrospectivos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Benzodiazepinas , Fibrosis , Necrosis , Microambiente Tumoral , Receptores Acoplados a Proteínas G , Neoplasias Pancreáticas
12.
bioRxiv ; 2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37745612

RESUMEN

In pancreatic ductal adenocarcinoma (PDAC), the fibroblastic stroma constitutes most of the tumor mass and is remarkably devoid of functional blood vessels. This raises an unresolved question of how PDAC cells obtain essential metabolites and water-insoluble lipids. We have found a critical role for cancer-associated fibroblasts (CAFs) in obtaining and transferring lipids from blood-borne particles to PDAC cells via trogocytosis of CAF plasma membranes. We have also determined that CAF-expressed phospholipid scramblase anoctamin 6 (ANO6) is an essential CAF trogocytosis regulator required to promote PDAC cell survival. During trogocytosis, cancer cells and CAFs form synapse-like plasma membranes contacts that induce cytosolic calcium influx in CAFs via Orai channels. This influx activates ANO6 and results in phosphatidylserine exposure on CAF plasma membrane initiating trogocytosis and transfer of membrane lipids, including cholesterol, to PDAC cells. Importantly, ANO6-dependent trogocytosis also supports the immunosuppressive function of pancreatic CAFs towards cytotoxic T cells by promoting transfer of excessive amounts of cholesterol. Further, blockade of ANO6 antagonizes tumor growth via disruption of delivery of exogenous cholesterol to cancer cells and reverses immune suppression suggesting a potential new strategy for PDAC therapy.

13.
Cancer Res Commun ; 2(9): 1017-1036, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36310768

RESUMEN

It is projected that in 5 years, pancreatic cancer will become the second deadliest cancer in the United States. A unique aspect of pancreatic ductal adenocarcinoma (PDAC) is its stroma; rich in cancer-associated fibroblasts (CAFs) and a dense CAF-generated extracellular matrix (ECM). These pathogenic stroma CAF/ECM units cause the collapse of local blood vessels rendering the tumor microenvironment nutrient-poor. PDAC cells are able to survive this state of nutrient stress via support from CAF-secreted material, which includes small extracellular vesicles (sEVs). The tumor-supportive CAFs possess a distinct phenotypic profile, compared to normal-like fibroblasts, expressing NetrinG1 (NetG1) at the plasma membrane, and active Integrin α5ß1 localized to the multivesicular bodies; traits indicative of poor patient survival. We herein report that NetG1+ CAFs secrete sEVs that stimulate Akt-mediated survival in nutrient-deprived PDAC cells, protecting them from undergoing apoptosis. Further, we show that NetG1 expression in CAFs is required for the pro-survival properties of sEVs. Additionally, we report that the above-mentioned CAF markers are secreted in distinct subpopulations of EVs; with NetG1 being enriched in exomeres, and Integrin α5ß1 being enriched in exosomes. Finally, we found that NetG1 and Integrin α5ß1 were detected in sEVs collected from plasma of PDAC patients, while their levels were significantly lower in plasma-derived sEVs of sex/age-matched healthy donors. The discovery of these tumor-supporting CAF-EVs elucidates novel avenues in tumor-stroma interactions and pathogenic stroma detection.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Integrina alfa5beta1/metabolismo , Vesículas Extracelulares/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
14.
Nat Commun ; 13(1): 1381, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296667

RESUMEN

Cellular plasticity contributes to intra-tumoral heterogeneity and phenotype switching, which enable adaptation to metastatic microenvironments and resistance to therapies. Mechanisms underlying tumor cell plasticity remain poorly understood. SOX10, a neural crest lineage transcription factor, is heterogeneously expressed in melanomas. Loss of SOX10 reduces proliferation, leads to invasive properties, including the expression of mesenchymal genes and extracellular matrix, and promotes tolerance to BRAF and/or MEK inhibitors. We identify the class of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) inhibitors as inducing cell death selectively in SOX10-deficient cells. Targeted therapy selects for SOX10 knockout cells underscoring their drug tolerant properties. Combining cIAP1/2 inhibitor with BRAF/MEK inhibitors delays the onset of acquired resistance in melanomas in vivo. These data suggest that SOX10 mediates phenotypic switching in cutaneous melanoma to produce a targeted inhibitor tolerant state that is likely a prelude to the acquisition of resistance. Furthermore, we provide a therapeutic strategy to selectively eliminate SOX10-deficient cells.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Línea Celular Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Fenotipo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Microambiente Tumoral
15.
BMC Cancer ; 11: 245, 2011 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-21668992

RESUMEN

BACKGROUND: Alterations towards a permissive stromal microenvironment provide important cues for tumor growth, invasion, and metastasis. In this study, Fibroblast activation protein (FAP), a serine protease selectively produced by tumor-associated fibroblasts in over 90% of epithelial tumors, was used as a platform for studying tumor-stromal interactions. We tested the hypothesis that FAP enzymatic activity locally modifies stromal ECM (extracellular matrix) components thus facilitating the formation of a permissive microenvironment promoting tumor invasion in human pancreatic cancer. METHODS: We generated a tetracycline-inducible FAP overexpressing fibroblastic cell line to synthesize an in vivo-like 3-dimensional (3D) matrix system which was utilized as a stromal landscape for studying matrix-induced cancer cell behaviors. A FAP-dependent topographical and compositional alteration of the ECM was characterized by measuring the relative orientation angles of fibronectin fibers and by Western blot analyses. The role of FAP in the matrix-induced permissive tumor behavior was assessed in Panc-1 cells in assorted matrices by time-lapse acquisition assays. Also, FAP+ matrix-induced regulatory molecules in cancer cells were determined by Western blot analyses. RESULTS: We observed that FAP remodels the ECM through modulating protein levels, as well as through increasing levels of fibronectin and collagen fiber organization. FAP-dependent architectural/compositional alterations of the ECM promote tumor invasion along characteristic parallel fiber orientations, as demonstrated by enhanced directionality and velocity of pancreatic cancer cells on FAP+ matrices. This phenotype can be reversed by inhibition of FAP enzymatic activity during matrix production resulting in the disorganization of the ECM and impeded tumor invasion. We also report that the FAP+ matrix-induced tumor invasion phenotype is ß1-integrin/FAK mediated. CONCLUSION: Cancer cell invasiveness can be affected by alterations in the tumor microenvironment. Disruption of FAP activity and ß1-integrins may abrogate the invasive capabilities of pancreatic and other tumors by disrupting the FAP-directed organization of stromal ECM and blocking ß1-integrin dependent cell-matrix interactions. This provides a novel preclinical rationale for therapeutics aimed at interfering with the architectural organization of tumor-associated ECM. Better understanding of the stromal influences that fuel progressive tumorigenic behaviors may allow the effective future use of targeted therapeutics aimed at disrupting specific tumor-stromal interactions.


Asunto(s)
Adenocarcinoma/patología , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Fibroblastos/enzimología , Gelatinasas/fisiología , Proteínas de la Membrana/fisiología , Invasividad Neoplásica/patología , Proteínas de Neoplasias/fisiología , Neoplasias Pancreáticas/patología , Serina Endopeptidasas/fisiología , Microambiente Tumoral/fisiología , Adenocarcinoma/enzimología , Animales , Western Blotting , Neoplasias de la Mama/patología , Técnicas de Cultivo de Célula , Línea Celular Tumoral/enzimología , Línea Celular Tumoral/patología , Movimiento Celular , Colágeno Tipo I/metabolismo , Endopeptidasas , Matriz Extracelular/ultraestructura , Fibronectinas/metabolismo , Fibronectinas/ultraestructura , Quinasa 1 de Adhesión Focal/fisiología , Gelatinasas/genética , Humanos , Integrina beta1/fisiología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos ICR , Ratones SCID , Células 3T3 NIH/enzimología , Neoplasias Pancreáticas/enzimología , Proteínas Recombinantes de Fusión/fisiología , Serina Endopeptidasas/genética , Imagen de Lapso de Tiempo , Trasplante Heterólogo
16.
Cancer Discov ; 11(2): 446-479, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33127842

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year survival rate and lacks effective therapeutics. Therefore, it is of paramount importance to identify new targets. Using multiplex data from patient tissue, three-dimensional coculturing in vitro assays, and orthotopic murine models, we identified Netrin G1 (NetG1) as a promoter of PDAC tumorigenesis. We found that NetG1+ cancer-associated fibroblasts (CAF) support PDAC survival, through a NetG1-mediated effect on glutamate/glutamine metabolism. Also, NetG1+ CAFs are intrinsically immunosuppressive and inhibit natural killer cell-mediated killing of tumor cells. These protumor functions are controlled by a signaling circuit downstream of NetG1, which is comprised of AKT/4E-BP1, p38/FRA1, vesicular glutamate transporter 1, and glutamine synthetase. Finally, blocking NetG1 with a neutralizing antibody stunts in vivo tumorigenesis, suggesting NetG1 as potential target in PDAC. SIGNIFICANCE: This study demonstrates the feasibility of targeting a fibroblastic protein, NetG1, which can limit PDAC tumorigenesis in vivo by reverting the protumorigenic properties of CAFs. Moreover, inhibition of metabolic proteins in CAFs altered their immunosuppressive capacity, linking metabolism with immunomodulatory function.See related commentary by Sherman, p. 230.This article is highlighted in the In This Issue feature, p. 211.


Asunto(s)
Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Netrinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Terapia de Inmunosupresión , Apoyo Nutricional , Microambiente Tumoral
17.
Methods Cell Biol ; 156: 109-160, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32222216

RESUMEN

Three-dimensional (3D) culturing models, replicating in vivo tissue microenvironments that incorporate native extracellular matrix (ECM), have revolutionized the cell biology field. Fibroblastic cells generate lattices of interstitial ECM proteins. Cell interactions with ECMs and with molecules sequestered/stored within these are crucial for tissue development and homeostasis maintenance. Hence, ECMs provide cells with biochemical and biomechanical cues to support and locally control cell function. Further, dynamic changes in ECMs, and in cell-ECM interactions, partake in growth, development, and temporary occurrences such as acute wound healing. Notably, dysregulation in ECMs and fibroblasts could be important triggers and modulators of pathological events such as developmental defects, and diseases associated with fibrosis and chronic inflammation such as cancer. Studying the type of fibroblastic cells producing these matrices and how alterations to these cells enable changes in ECMs are of paramount importance. This chapter provides a step-by-step method for producing multilayered (e.g., 3D) fibroblastic cell-derived matrices (fCDM). Methods also include means to assess ECM topography and other cellular traits, indicative of fibroblastic functional statuses, like naïve/normal vs. inflammatory and/or myofibroblastic. For these, protocols include indications for isolating normal and diseased fibroblasts (i.e., cancer-associated fibroblasts known as CAFs). Protocols also include means for conducting microscopy assessments, querying whether fibroblasts present with fCDM-dependent normal or CAF phenotypes. These are supported by discrete semi-quantitative digital imaging analyses, providing some imaging processing advice. Additionally, protocols include descriptions for effective fCDM decellularization, which renders cellular debris-free patho/physiological in vivo-like scaffolds, suitable as 3D substrates for subsequent cell culturing.


Asunto(s)
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Ingeniería de Tejidos/métodos , Animales , Forma del Núcleo Celular , Células Cultivadas , ADN/metabolismo , Humanos , Ratones , Células 3T3 NIH
18.
Commun Biol ; 3(1): 470, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32843667

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Commun Biol ; 3(1): 390, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694539

RESUMEN

Aligned extracellular matrix fibers enable fibroblasts to undergo myofibroblastic activation and achieve elongated shapes. Activated fibroblasts are able to contract, perpetuating the alignment of these fibers. This poorly understood feedback process is critical in chronic fibrosis conditions, including cancer. Here, using fiber networks that serve as force sensors, we identify "3D perpendicular lateral protrusions" (3D-PLPs) that evolve from lateral cell extensions named twines. Twines originate from stratification of cyclic-actin waves traversing the cell and swing freely in 3D to engage neighboring fibers. Once engaged, a lamellum forms and extends multiple secondary twines, which fill in to form a sheet-like PLP, in a force-entailing process that transitions focal adhesions to activated (i.e., pathological) 3D-adhesions. The specific morphology of PLPs enables cells to increase contractility and force on parallel fibers. Controlling geometry of extracellular networks confirms that anisotropic fibrous environments support 3D-PLP formation and function, suggesting an explanation for cancer-associated desmoplastic expansion.


Asunto(s)
Citoesqueleto/genética , Matriz Extracelular/genética , Adhesiones Focales/genética , Neoplasias/genética , Actinas/genética , Adhesión Celular/genética , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Miofibroblastos/metabolismo , Neoplasias/patología , Microambiente Tumoral/genética
20.
Neuro Oncol ; 22(5): 625-638, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729527

RESUMEN

BACKGROUND: Medulloblastoma (MB) with metastases at diagnosis and recurrence correlates with poor prognosis. Unfortunately, the molecular mechanism underlying metastases growth has received less attention than primary therapy-naïve MB. Though astrocytes have been frequently detected in brain tumors, their roles in regulating the stemness properties of MB stem-like cells (MBSCs) in disseminated lesions remain elusive. METHODS: Effects of tumor-associated astrocyte (TAA)-secreted chemokine C-C ligand 2 (CCL2) on MBSC self-renewal was determined by immunostaining analysis. Necroptosis of TAA was examined by measuring necrosome activity. Alterations in Notch signaling were examined after inhibition of CCL2. Progression of MBSC-derived tumors was evaluated after pharmaceutical blockage of necroptosis. RESULTS: TAA, as the essential components of disseminated tumor, produced high levels of CCL2 to shape the inflammation microenvironment, which stimulated the enrichment of MBSCs in disseminated MB. In particular, CCL2 played a pivotal role in maintaining stem-like properties via Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3)-mediated activation of Notch signaling. Loss of CCL2/C-C chemokine receptor 2 (CCR2) function repressed the JAK2/STAT3-Notch pathway and impaired MBSC proliferation, leading to a dramatic reduction of stemness, tumorigenicity, and metastasizing capability. Furthermore, necroptosis-induced CCL2 release depended on activation of receptor-interacting protein 1 (RIP1)/RIP3/mixed lineage kinase domain-like pseudokinase (MLKL) in TAA, which promoted the oncogenic phenotype. Blockade of necroptosis resulted in CCL2 deprivation and compromised MBSC self-proliferation, indicating MBSCs outsourced CCL2 from necroptotic TAA. Finally, CCL2 was upregulated in high-risk stages of MB, further supporting its value as a prognostic indicator. CONCLUSION: These findings highlighted the critical role of CCL2/CCR2 in Notch signaling activation in MBSCs and revealed a necroptosis-associated glial cytokine microenvironment driving stemness maintenance in disseminations.Key Points1. TAA-derived CCL2 promoted stemness in disseminated MBSCs through Notch signaling activation via the JAK2/STAT3 pathway.2. TAA released CCL2 in a RIP1/RIP3/MLKL-dependent manner leading to necroptosis.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Apoptosis , Astrocitos , Quimiocina CCL2 , Humanos , Ligandos , Necrosis , Proteínas Quinasas , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA