Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Neurol ; 12: 794071, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126295

RESUMEN

Exposure to metals is ubiquitous and emission sources include gasoline, diesel, smoke from wildfires, contaminated soil, water and food, medical implants, waste recycling facilities, subway exposures, and occupational environments. PM2.5 exposure is associated with impaired cognitive performance, neurobehavioral alterations, incidence of dementia, and Alzheimer's disease (AD) risk. Heavy-duty diesel vehicles are major emitters of metal-rich PM2.5 and nanoparticles in Metropolitan Mexico City (MMC). Cognitive impairment was investigated in 336 clinically healthy, middle-class, Mexican volunteers, age 29.2 ± 13.3 years with 13.7 ± 2.4 years of education using the Montreal Cognitive Assessment (MoCA). MoCA scores varied with age and residency in three Mexican cities with cognition deficits impacting ~74% of the young middle-class population (MoCA ≤ 25). MMC residents ≥31 years ( x ¯ 46.2 ± 11.8 y) had MoCA x ¯ 20.4 ± 3.4 vs. low pollution controls 25.2 ± 2.4 (p < 0.0001). Formal education years positively impacted MoCA total scores across all participants (p < 0.0001). Residency in PM2.5 polluted cities impacts multi-domain cognitive performance. Identifying and making every effort to lower key pollutants impacting neural risk trajectories and monitoring cognitive longitudinal performance are urgent. PM2.5 emission control should be prioritized, metal emissions targeted, and neuroprevention interventions implemented early.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA