Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Total Environ ; 916: 169895, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38215854

RESUMEN

Marine bony fish are important participants in Earth's carbon cycle through their contributions to the biological pump and the marine inorganic carbon cycle. However, uncertainties in the composition and magnitude of fish contributions preclude their integration into fully coupled carbon-climate models. Here, we consider recent upwards revisions to global fish biomass estimates (2.7-9.5×) and provide new stable carbon isotope measurements that show marine fish are prodigious producers of carbonate with unique composition. Assuming the median increase (4.17×) in fish biomass estimates is linearly reflected in fish carbonate (ichthyocarbonate) production rate, marine fish are estimated to produce between 1.43 and 3.99 Pg CaCO3 yr-1, but potentially as much as 9.03 Pg CaCO3 yr-1. Thus, marine fish carbonate production is equivalent to or potentially higher than contributions by coccolithophores or pelagic foraminifera. New stable carbon isotope analyses indicate that a significant proportion of ichthyocarbonate is derived from dietary carbon, rather than seawater dissolved inorganic carbon. Using a statistical mixing model to derive source contributions, we estimate ichthyocarbonate contains up to 81 % dietary carbon, with average compositions of 28-56 %, standing in contrast to contents <10 % in other biogenic carbonate minerals. Results also indicate ichthyocarbonate contains 5.5-40.4 % total organic carbon. When scaled to the median revised global production of ichthyocarbonate, an additional 0.08 to 1.61 Pg C yr-1 can potentially be added to estimates of fish contributions to the biological pump, significantly increasing marine fish contributions to total surface carbon export. Our integration of geochemical and physiological analyses identifies an overlooked link between carbonate production and the biological pump. Since ichthyocarbonate production is anticipated to increase with climate change scenarios, due to ocean warming and acidification, these results emphasize the importance of quantitative understanding of the multifaceted role of marine fish in the global carbon cycle.


Asunto(s)
Carbono , Carbonatos , Animales , Humanos , Carbono/metabolismo , Carbonatos/química , Agua de Mar/química , Isótopos de Carbono/metabolismo , Dióxido de Carbono/metabolismo , Peces/metabolismo , Ciclo del Carbono , Proteínas de Transporte de Membrana/metabolismo , Océanos y Mares
2.
Sci Total Environ ; 899: 165491, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453709

RESUMEN

Few studies have been performed on early-life stage toadfish, and none have addressed their tolerance to temperature and hypoxia despite large seasonal temperature fluctuations and daily hypoxia in their natural environment. The first directed captive breeding of Opsanus beta allowed the examination of larval oxygen demands and hypoxia tolerance across the range of their environmental temperatures (23-33 °C). Larval toadfish exhibited a surprisingly large aerobic scope across the tested temperature range. In response to progressive hypoxia, larval toadfish showed early metabolic depression and a low regulation index (RI), while juveniles had higher regulatory abilities but, unexpectedly, a lower aerobic scope. Larval and juvenile toadfish survived hours of severe hypoxia, but larval fish had a higher excessive post-hypoxia oxygen consumption, yet their metabolic rate returned to RMR in the same timeframe as the juveniles, likely due to their higher aerobic scope. We defined hypoxia tolerance using a physiological trait, p50, the oxygen tension in which oxygen uptake is reduced to 50 % of the metabolic rate at rest and determined it at all tested temperatures. Comparing these p50 values to environmental conditions in Florida Bay using hourly temperature and oxygen measurements from January 2014-October 2021 revealed that larval toadfish rarely experience < p50 conditions (11 % of events). Further, the median duration of these events was 3 h. The metabolic performance of larval toadfish combined with temperature and oxygen observations from their natural environment reveals the fascinating strategy in which larval toadfish survive diel hypoxia across seasons.


Asunto(s)
Batrachoidiformes , Animales , Batrachoidiformes/metabolismo , Larva/fisiología , Hipoxia/veterinaria , Oxígeno/metabolismo , Ambiente , Temperatura , Consumo de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA